Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

Прогнозные модели Уральской СГ-4




Цели и задачи СГ-4

 

 

Скважина заложена с целью изуче­ния строения земной коры и рудонос­ных комплексов внутриконтинентальных подвижных поясов эвгеосинклинального типа и предусматривает ре­шение следующих задач.

1. Изучение геологического разреза Тагильского прогиба и особенностей его геотектонического развития.

2. Установление состава, строения, возраста и природы фундамента; соотношение образований геосинклиналь­ного комплекса и фундамента; харак­тер и степень его переработки геосин­клинальным процессом.

3. Исследование глубинных процес­сов рудообразования, воссоздание мо­делей формирования типичных для прогиба месторождений и разработка новых методов эффективного прогноза и поисков минерального сырья.

4. Получение информации о физиче­ских свойствах пород на глубине, особенностях флюидного режима и приро­де сейсмических границ; выявление связи гравитационных, геотермических, геоэлектрических и магнитных полей с глубинным строением.

5. Выявление положения и морфоло­гии стратиграфических и других гра­ниц раздела вещественных комплексов и структурных этажей.

Перечисленным не исчерпывается многообразие исследовательских воз­можностей СГ-4, о чем свидетельствуют опыт Кольской и других сверхглубоких скважин, а также ознакомление с зарубежными программами научного бурения. Показателен пример немец­кой программы континентального бу­рения КТВ, в которой делается акцент на физическую и химическую сторону геологических явлений, изуче­ние современного состояния земной коры и современных геологических процессов. Признавая правомочность такого подхода, целевое назначение-СГ-4 можно определить как фундамен­тальные исследования физических в химических условий и процессов в глу­бинных частях земной коры для пони­мания структуры, состава, динамики и эволюции Уральского подвижного поя­са. Обращает внимание более кон­кретное звучание ряда научных задач, таких, как исследование глубин про­никновения и влияния циркулирующих в земной коре растворов на образова­ние месторождений минерального сы­рья, процессы деформации и конвек­ции, а также значение воды для дина­мических процессов, происходящих в. земной коре; изучение интенсивности дегазации и вещественного состава мантии Земли и континентальной ча­сти земной коры и др. Все это с поправкой на уральскую специфику спра­ведливо и для СГ-4.

Необходимо было создать условия для максимальной реализации познавательных возможностей скважины и сопровождающего ее комплекса работ, а именно: обеспечение современного (мирового) уровня исследований на самой скважине; создание адекватной системы комплексных геолого-геофизических исследований в околоскважинном пространстве; привлечение к ис­следованиям, анализу и обобщению результатов наиболее компетентных специалистов; создание при проведе­нии исследований обстановки гласно­сти и широкого сотрудничества.

Геологический разрез СГ-4

 

 

Исследования керна ствола и района заложения скважины проводится Уральской ГРЭ СГБ НПО «Недра» совместно с организациями соиспол­нителями ПГО «Уралгеология», КамНИИКИГС, ИГиГ УрО АН СССР, ИГ УрО АН СССР, ВСЕГЕИ, ЦНИГРИ, ИГЕМ, ИМГРЭ, ВНИИгео-информсистем, ПГО «Аэрогеология», НПО «Союзпромгеофизика» и др.

Вскрытый скважиной разрез пред­ставлен силурийскими вулканогенными и вулканогенно-осадочными образова­ниями, относимыми согласно современ­ной стратиграфической схеме к именновской свите (S1l3—S2ld).

Общее строение разреза, по результатам выполненной детальной документации керна, просмотра шлифов, вулкано-фациальных и геохимических исследований, установлено сле­дующее.

40—430 м — эффузивная толша в основном базальтовых, андезитобазальтовых лав, в инт. 130—252 м — также ферробазальтов и палеоисландитов;

430—3070 м — монотонная толша грубообломочных и агломерато-грубопесчаных туфов основного состава типично именновского облика: никак не обработанный шлаковый и миндалекаменный материал обильнокрупнопорфировых обычно плагиоклаз-двупироксеновых базальтов и андезитобазальтов, нередко со­держит примесь плагиофировых андезитов и калиевых базальтов и образует пласты и их серии мощностью 20—70 м, разделенные прослойками песчаных тефроидов, обычно слабо слоистых; на 1920—1940 м и около 3000 м появляются подводно-морские флишоиды с темными алевропелитами в верхах ритмов;

3070—3468 м — переслаивание туфов плагиофировых андезитов, местами с примесью базальтового материала и того же состава песчаных тефроидных флишоидов; с 3280 м туфы и тефроиды преимущественно более кислые — андезитодацитовые, часто с оби­лием витрокластики в виде обрывков и комочков пемз и перлитов;

3468—5006 м — флишоидное чередование туфов подводных пирокластических потоков однородно риодацитового состава (также с пемзами, перлитами и обилием осколков плагиоклаза), в инт. 3850—4297 м чаше всего повторно перемешенных как подводно-оползневые массы. Сопровождают их резко подчинен­ные по объемам более мелкопесчаные в разной степени отсорти­рованные флишоидные тефроиды того же состава и темные силициты верхов ритмов, содержащие конодонты граничных слоев лланловери и венлокского ярусов ран­него силура;

5006—5070 м — пачка темных зеленовато-серых силицитов, местами с обильными остатками радиолярий, в верхней половине — с прослойками кислых туфов и тефроидов;

5070—5401 м — кабанский комплекс, представленный в инт. 5072—5076 м темными туфопесчаниками с витрокластикой ос­ новного состава, переходящими вверху в алевропелиты и красные яшмоиды; ниже сплошь распространена краснообломочная сва­ренная пирокластика афировых преимущественно калиевых ба­зальтов, исландитов и спилитов, которая перемежается с потока­ми неокисленных лав того же (5182—5215 м и др.) и кислого составов (5265—5312,4 м).

В целом разрез вулканокластической и переходной толщ малоконтрастный, содержит в разных пропорциях при­знаки как вулканогенного, так и оса­дочного происхождения. Толщина этих пород увеличивается с глубиной. Флишоидная толща при слабых фациальных отличиях от низов переходной рез­ко отличается более кислым составом обломочного материала.

При сопоставлении вскрытого разре­за с проектным установлено превышение мощности отложений в 1,5 раза. В результате бурения возникли вопро­сы, касающиеся геометрии, простран­ственных и генетических взаимоотно­шений слагающих верхнюю часть про­гиба комплексов. Решение их возмож­но при дальнейшем углублении СГ-4 и выполнении целенаправленных ис­следований в околоскважинном про­странстве, включая бурение вспомога­тельных структурных скважин.

При проведении циклического ана­лиза в пределах вскрытого скважиной разреза выделено пять мегаритмов, границы которых совпадают или близ­ки к границам отмеченных толщ и под-толщ на глубинах 3487 м, 2640 м, 1919 м и 430 м и характеризуются рез­ким изменением литологии пород.

Нижний мегаритм 3487—4064 м со­ответствует флишоидной толще и является вулканогенно-осадочным. В раз­резе полностью не вскрыт. Он сформировался в условиях слабой вулканиче­ской активности. В нем преобладают удаленные мелкообломочные фации андезидацитового состава, широко раз­виты тонкослоистые алевролитовые и алевропсаммитовые разности осадоч­ных пород, доля которых к верхам мегаритма возрастает до 80—90 %. Чере­дование тонкослоистых прослоев, ха­рактеризующихся маломощной (0,01— 0,5 м) двухчленной, реже трехчленной ритмикой со слабо дифференцирован­ными гравийными, образует контраст­ные мезоритмы мощностью от 10 до 75 м.

Мегаритм 2640—3487 м, условно от­носимый к вулканогенно-осадочному типу, характеризуется тем, что на фо­не мелкой ритмичности (от долей до 5 м) мелкопсефито-псаммитовых раз­ностей проявлены контрастные гетерообломочные ритмы мощностью от 2—3 до 15—20 м, где крупнопсефитовые и агломератовые обломки изолированно погружены в псаммитовый субстрат. Периодически повторяющиеся интерва­лы развития алевропелитовых разно­стей позволяют выделить ряд мезорит-мов с границами на 3986 м, 3332 м, 3276 м, 3160 м, 3083 м и 2986 м. Отме­ченные особенности мегаритма, веро­ятно, обусловлены неравномерными проявлениями вулканической активно­сти и грязекаменных потоков.

Три верхних мегаритма (1919— 2540 м, 430—1919 м, 0—430 м) вулканогенные, частью оеадочно-вулканогенные. Они сформировались в результате нескольких вспышек вулканической деятельности с общей тенденцией к ее нарастанию.

Строение первых двух в общих чер­тах близкое. В их основании ритмич­ность относительно мелкая, с мощно­стью преобладающих элементарных ритмов 2—3 м. В центральных частях мегаритмов выделяются крупные рит­мы мощностью до 10—30 м и более. Доля грубообломочного материала вы­растает здесь до 70—90 %. В верхних; частях снова отмечена мелкая ритмич­ность (от 0,1—0,2 м до 2—3 м). В со­ставе ритмов увеличивается доля сор­тированного вулканогенного материа­ла, а в некоторых из них в интервале 1919—2007 м появляются прослои кремнистых алевропелитовых пород мощностью 0,2—5 см.

Верхний—эффузивный мегаритм (О—430 м) сформировался в результа­те нескольких импульсов вулканиче­ской деятельности с короткими пере­рывами между ними (88—105 м). Ниж­няя часть мегаритма сложена обильно-порфировыми пироксен-плагиофировыми базальтами, в средней (120— 262 м)—залегают подушечные лавы афировых андезибазальтов-базальтов, а в верхах—плагиофировые андезибазальты.

В фациальном отношении в разви­тых по всему разрезу отложениях отмечаются подводные условия образо­вания, на отдельных глубинах отличающиеся характером вулканизма и удаленностью зон аккумуляции вулканического материала от береговой ли­нии, что выражается различиями его гранулометрического и вещественного состава, а также разной степенью перемыва и сортировки. В целом, по-ви­димому, господствовала обстановка островных вулканов с преобладанием фации субаквальных пирокластических. и подводных гравитационных грязека­менных потоков. При этом нижняя часть разреза на интервале развития алевритистых, песчаных и гравийныу ритмов флишоидной толщи отвечает наиболее глубоководной, удаленной от вулканических построек области. Выше по разрезу преобладают мелковод­ные склоновые фации вплоть до субаэральных, регистрируемых горизонтами с красноцветными гематизированными обломками.

.

 

Геологический разрез СГ-4

 

 

 

Рис. 4. Геологический разрез СГ-4, составлен в Уральской экспедиции сверхглубокого бурения ГНПП «Недра»:

1 — базальты плагиофировые, пироксен-плагиофировые (а), андезитобазальты (о); 2 — андезиты (а), дациты, риодациты (б); 3 — туфы глыбовые (а), агломератовые (б), крупнопсефитовые (в), мелкопсефитовые (г), кристаллолитотуфы (е), 4— туффиты агломератовые (а), крупнопсефитовые (б), мелкопсефитовые (в), псаммитовые (г); 5— тефроиды мелкопсефитовые (а), псаммитовые (б); 6— туфоконгло-мераты, туфопесчаники; 7 — туфогравелиты, туфопесчаники; 8 — туфопесчаники, туфоалевропесчаники; 9 — туфопесчаники, туфоалевролиты; 10— песчаники, алевропесчаники, алевролиты; 11— кремнистые, углисто-кремнистые алевролиты, алевропелиты; 12 — диориты (а), кварцевые диориты (б); 13 — внемасштабный знак даек основного (а) и среднего (б) составов; 14 — тектонические нарушения: сбросы, взбросы (в), малоамплитудные надвиги (б); 15— границы геологических тел (а), толщ и подтолщ (б), пачек (в)

 

 

Прогнозные модели Уральской СГ-4

 

Среди уральских исследователей, в т. ч. име­ющих отношение к СГ-4, еще сильны позиции сторонников классической (фиксистской) геологии, рассматривающие регион как достаточно фикси­рованную полициклическую геосинкли­нальную систему с интенсивным развитием магмо- и рудоподводящих глу­бинных разломов и повторяемостью в каждом цикле однотипных геологических и рудных формаций.

Согласно альтернативной, мобилистской концепции Урал представляет собой сложное покровно-складчатое со­оружение, состоящее из разнородных аллохтонных пластин, образованных путем крупных горизонтальных перемещений геологических масс. Эти представления вносят существенные коррективы в схему металлогенического развития региона, дают новое толкование природе и перспективам его рудоносности

Отметим, что деление геотектониче­ских позиций на фиксистские и мобилистские в какой-то мере условное и не отражает всего разнообразия представлений о месте заложения, движу­щих силах и истории развития Уральской эвгеосинклинали. В последнее время наблюдается тенденция в сближении позиций, что выражается в при­знании представителями фиксистского направления ограниченного спрединга с возникновением раздвигов, обнажающих симатическую кору.

Благодаря тесному сотрудничеству большой группы исследователей удалось сформировать комплект из 11 мо­делей, отражающих практически весь спектр существующих прогнозных представлений о глубинном строении района бурения (рис. 2). Не имея воз­можности подробно охарактеризовать все модели, остановимся на наиболее существенных и принципиально отли­чающихся.

В. С. Дружининым составлены осно­вополагающие сейсмические и геолого-геофизические разрезы и дан вариант прогнозной модели, основными элемен­тами которой являются структурно-ве­щественные комплексы, физическая характеристика, положение в разрезе сейсмических границ, возможная их природа. Согласно этой модели СГ-4 должен вскрыть полный разрез уралид мощностью примерно 11 км, пройти около 4 км по рифейским образовани­ям и в интервале 14—14,5 км войти в образования древнего комплекса осно­вания предположительно архейско-протерозойского возраста. При этом в составе уралид выделяются четыре комплекса, среди которых наиболее интересным и неясным будет комплекс пород на глубине 7—9 км. В целом геологическая привязка всех выделяе­мых комплексов и их литологический состав в значительной мере условные. Это попытка спроецировать на разрез по скважине поверхностные образова­ния, развитые к западу от нее.

По Ю. С. Каретину (рис. 3, а) Та­гильский прогиб представляет целост­ную грабенообразную структуру с плоским днищем и четко выраженны­ми бортами. Развита сложная система листрических сбросов растяжения, большей частью трансформированных в малоамплитудные надвиги. Фиксистское существо модели автор обос­новывает тем, что амплитуды смеще­ний относительно малы и не нарушают существенным образом первичную троговую синседиментационную структуру растяжений. Расположенные к западу от СГ-4 интрузии Платиноносного поя­са рассматриваются в виде несмещен­ной магмоподводящей зоны, субверти­кально уходящей на глубины свыше 50 км и не пересекающейся скважиной. По выражению автора, эти интрузии «сшивают» весь разрез.

В. Н. Пучков при построении своей мобилистской модели (см. рис. 3, б) исходит из результатов геологических исследований в зоне сочленения Тагильской и Центральноуральской зон севернее района бурения, где устанавливается залегание пород Тагильского комплекса в виде тектонического покрова регионального значения. Используя изменение положения с глу­биной отражающих площадок (по дан­ным MOB и ГСЗ) с глубиной, автор модели предполагает соответствующее выполаживание поверхностей тектони­ческого срыва на глубине и прогнози­рует их подсечение сверхглубокой скважиной. Одновременно предполага­ется возможность повторения в разре­зе отложений с глубины 7 км, имею­щих более молодой возраст, чем выше­лежащие, в пользу чего, по мнению. В. Н. Пучкова, свидетельствует уста­новленная ГСЗ неоднократная инвер­сия скоростей на глубинах 7—17 км. На вопрос о том, какие комплексы тек­тонически совмещаются в предполагае­мом разрезе СГ-4, автор не дает одно­значный ответ. В качестве возможного состава наиболее интересной мало­плотной пластины на глубине 7—9 км высказаны следующие варианты: вулканогенно-осадочные отложения верх­него силура—девона Тагильской зоны; плагиограниты, плагиогнейсы (плагио-мигматиты); серпентинитовый меланж, сближенные зоны рассланцевания; ордовикско-девонские существенно терригенные отложения континентального подножия. Пластина, расположенная на глубине 9—11 км, наиболее вероят­но, принадлежит меланократовому фундаменту (габбро, амфиболиты, ги-пербазиты), первично подстилавшему вулканогенные комплексы Тагильской зоны. На глубине 11 км и ниже ожи­дается вскрытие метаморфических, принадлежащих фундаменту утонь­шенного, частично разрушенного при рифтогенезе края Восточно-Европейского континента — переходной зоны oт континентальной коры к океанической. Не исключено, что на глубине 11-15 км повторяетя тектонический разрез палеозойских эвгеосинклинальных толщ и их меланократового основания.

В модели С. Т. Агеевой, А. Г. Волч кова и П. С. Ревякина (ЦНИГРИ) под Тагильской эвгеосинклиналью предполагается куполовидное поднятие гранулит-базитового слоя, свод которого расположен на глубине около 12— 13 км. Выше должны залегать слабо вскрытые на поверхности отложе­ния океанической коры, в основании которых залегает мощный офиолитовый комплекс, инъецированный круп­ными телами гипербазитов.

В. И. Сегалович (КамНИИКИГС) составил два крайне мобилистских варианта модели, исходя из гипотезы об­ширного, протяженностью в сотни километров, тектонического перекрытия окраины Восточно-Европейского континента покровами, состоящими из продуктов спрединга окраинных и междуговых бассейнов, а также островодужных вулканитов. Согласно этой модели, СГ-4 до глубины 6 км вскроет вулканогенно-осадочные комплексы верхней части Тагильского прогиба, далее пересечет интрузивные образо­вания Платиноносного пояса, метаба-зиты низов лландовери, мощную (порядка 3 км) пластину ультрабазитов, и, наконец, после 14 км войдет в отло­жения верхнего девона — нижнего кар­бона Восточно-Европейской плиты. Со­гласно другому варианту, СГ-4 пересе­чет весь разрез аллохтонной части про­гиба, называемой автором «Тагиль­ским пакетом покровов», и, возможно, достигнет подстилающей кровли Улсовско-Висимской зоны поддвига (Оз— D2).

Н. Г. Берлянд (ВСЕГЕИ) отдает предпочтение существенно габброидному варианту разреза, согласно которо­му в интервале 7—14 км предполага­ется вскрыть габброиды, сопоставимые с арбатским комплексом, выходящим на поверхность западнее СГ-4.

По К. П. Плюснину (ПГО «Уралгеология»), Тагильский прогиб является сложным образованием, которое фор­мировалось на одних стадиях как гра­бен, а на других—как рамповая структура. В предложенной им модели большая роль отводится разновозраст­ным тектоническим нарушениям, раз­бивающим исследуемую часть прогиба на многочисленные блоки, что услож­няет увязку вскрываемого скважиной разреза с поверхностными структура­ми и требует проведения систематиче­ских структурно-тектонических иссле­дований.

В рифтогенной модели Л. И. Десятниченко (ПГО «Уралгеология») фор мирование эвгеосинклинального проги­ба связано с интенсивным растяжением земной коры вдоль глубинного раз­лома, сопровождающимся постепенным заполнением формирующейся структу­ры раннегеосинклинальными образованиями боткой фундамента. В последующие этапы переработке подвергаются и ранние офиолитовые ком­плексы. Таким образом, под прогибом сохраняются лишь переработанные фрагменты допалеозойских комплек­сов, и перед скважиной стоит нелегкая задача идентификации агломерата ге­терогенных образований.

Несмотря на то что практически все модели базируются, по существу, на одной и той же геофизической инфор­мации, в совокупности они выявляют разноречивость представлений о глубинном строении Урала. Исключая са­мую верхнюю часть прогиба, модели противоречат по всем более или менее существенным компонентам прогнози­руемого разреза: его непрерывности или тектонической разобщенности, воз­можности пересечения скважиной тел габброидов и ультрабазитов, глубине и составу основания прогиба, перспек­тивам вскрытия рудоносных комплек­сов, природе слоев, инверсии скоро­стей и др.

Можно сделать вывод,что указанная раз­норечивость объективно и наглядно от­ражает не только состояние глубинных геолого-геофизических исследований на Урале, но и, в какой-то мере, всей геологии в целом. Нетрудно понять жизненную необходимость сверхглубо­кого бурения, поскольку только пря­мое проникновение в недра способно обеспечить теоретическую геологию и прикладные металлогенетические ис­следования фундаментальной факто­графической основой, существенно освободив их от всякого рода условно­стей и фантазий.

  Первоначально намеченную проект­ную глубину СГ-4— 15 км следует счи­тать достаточно обоснованной. При этом скважиной должны пересекаться основные структурно-вещественные комплексы Тагильского прогиба, вклю­чая меланократовые образования ниж­ней части разреза, и достигнуто надеж­ное вскрытие фундамента с глубиной врезки до 1,5 км. По наиболее оптимистичным прогнозам (Ю. С. Каретин, В. С. Орлов), предполагающим отно­сительно менее глубокое залегание фундамента прогиба, минимально не­обходимая глубина скважины может доставить 12—13 км. С учетом этого глубину 12 км можно определить как оптимальный рубеж, по достижении которого целесообразно рассмотреть вопрос о конечной глубине бурения скважины.

 

 

Прогнозные модели верхней части земной коры района Уральской СГ-4 (с упрощениями авторов)

 

 

Рис.3

а — фиксистская (геосинклинально-троговая), по Ю. С. Каретину, 1988; б— мобилистская, по В.Н.Пучкову, 1988.

 

 I — протоофиолитовая ас­социация, 2 — гранулито-базитовый комплекс архея, 3 — геофизический базальтовый слой, 4 — меланократовый фундамент; типы разре­зов: I — Лемванский, II—Тагильский

Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...