Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

Вывод света из полупроводника




Содержание работы

Введение.................................................. 2

Общие сведения о СИД......................................... 3

Вывод света из полупроводника.................................... 7

Примеры конструкции светодиодов с различными КСС.................... 12

Заключение................................................ 18

Приложение............................................... 20

Список литературы........................................... 24

Введение

       Полупроводниковые светоизлучающие диоды (СИД) - класс твердотельных приборов, в которых электрическая энергия непосредственно преобразуется в световую. В основе их действия лежит инжекционная электролюминесценция. СИД решают задачу преобразования электрических сигналов оптические, а так же служат эффективными по КПД источниками света.

На сегодняшний день СИД активно применяются в различных областях: оптоэлектроника, системы отображения информации (как табло «бегущих» строк текста, так и достаточно качественных панелей вывода статичного и динамического изображений). Круг задач, при решении которых используются СИД, обусловлен высокой эффективностью преобразования электрической энергии в световую (15-20 лм/Вт, лампы накаливания – 10-15 лм/Вт), высокой яркостью и квантовым выходом (при небольшой площади СИД сила света по оси – 30-50 кд), высоким быстродействием (малая инерционность – порядка единиц наносекунд), характерным спектральным составом, возможностью модуляции излучения питанием, малым потреблением энергии (доли или единицы ватт), электробезопасностью (единицы вольт), надежностью, большим сроком службы (десятки тысяч часов), высокой устойчивостью к механическим и климатическим воздействиям.

Первые явления, связанные с появлением СИД, были обнаружены Лосевым О.В. в 1923 г. Активное развитие технологии изготовления СИД с различными параметрами продолжается и сегодня.

Кроме вышеперечисленных сфер СИД задействованы в освещении. Применение СИД для освещения обусловлено, как указывалось выше, высоким КПД преобразования энергии, надёжностью конструкции, хорошо развитой на сегодняшней день технологией изготовления СИД с различными параметрами свечения.

Как и практически любой источник излучения, СИД функционирует совместно с оптической системой, формирующей требуемую кривую силы света (КСС). Некоторым вопросам оптических систем СИД посвящён данный реферат.

 

Общие сведения о СИД

В основе действия СИД лежит явление инжекционной электролюминесценции в полупроводниковом кристалле с электронно-дырочным переходом или контактом металл-полупроводник.

Инжекционная электролюминесценция характерна для р—n-перехода, подключенного в прямом направлении к источнику питания. При этом в n-область вводятся (инжектируются) избыточные дырки, а в р-область — электроны или те и другие вводятся в высокоомный тонкий слой между n- и р- областями. Свечение возникает при рекомбинации электронов и дырок (обратный световой генерации тока в полупроводниковых фотоприёмниках эффект).

 СИД испускают некогерентное излучение, но, в отличие от тепловых источников света, с более узким спектром, вследствие чего излучение в видимой области воспринимается как одноцветное. Цвет излучения зависит от полупроводникового материала и его легирования. C целью снижения потерь на полное внутреннее отражение и поглощение в теле кристалла для последнего выбирают полусферическую форму, а для улучшения характеристик направленности излучения СИД помещают в параболический или конический отражатель. Следует отметить, что угловое распределение вышедших из полупроводника фотонов имеет в значительной степени случайный характер.

Промышленность выпускает СИД в дискретном и интегральном исполнении. Дискретные СИД видимого излучения используют в качестве сигнальных индикаторов. Интегральные (многоэлементные) приборы (светоизлучающие цифро-знаковые индикаторы, профильные шкалы, многоцветные панели и плоские экраны) применяют в различных системах отображения, в электронных часах и калькуляторах. СИД инфракрасного излучения находят применение в устройствах оптической локации, оптической связи, в дальномерах, матрицы СИД - в устройствах ввода и вывода информации ЭВМ. В ряде областей применения СИД конкурирует с родственным ему прибором – инжекционным полупроводниковым лазером, который генерирует когерентное излучение и отличается от СИД наличием резонатора и режимом работы.

Выпускаемые промышленностью светоизлучающие диоды по конструкции могут быть разделены на следую­щие группы [1]:

1) в металло-стеклянном корпусе;

2) в конструкции с полимерной герметизацией;

3) бескорпусные диоды.

Диоды в металло-стеклянном корпусе отличаются высокой надежностью и стабильностью параметров, механической и климатической устойчивостью.

Диоды с полимерной герметизацией по некоторым характеристикам имеют преимущества перед диодами в металло-стеклянной конструкции:

 а) полимерная герметизация в большей степени позволяет осуществить перераспределение света в пространстве как в направлении сужения диаграммы направленности излучения (с увеличением силы света – полимерное покрытие играет роль коллиматора), так и в направлении ее расширения (введение в полимер рассеивающих частиц позволит увеличить угловую дисперсию фотонов на выходе СИД);

б) полимерная герметизация увеличивает внешний квантовый выход излучения за счет увеличения угла полного внутреннего отражения на границе кристалл — полимер;

в) герметизированные полимерами приборы обладают большей стойкостью к ударным и вибрационным нагрузкам, чем приборы в металло-стеклянных корпусах;

г) полимерная герметизация позволяет получить при необходимости малое отношение объема (габарита) прибора к объему (габариту) кристалла;

д) полимерная герметизация благодаря своей технологичности позволяет существенно снизить трудоемкость изготовления приборов и их стоимость.

Бескорпусные диоды — самые миниатюрные светоизлучающие диоды, используемые в герметизируемой аппаратуре. Кристаллодержатель светоизлучающего диода содержит, как правило, посадочное место для кристалла с отражающими свет стенками. Отражающие стенки охватывают боковое излучение в угле примерно 50°. Они в значительной степени сужают диаграмму направленности излучения и увеличивают силу света в осевом направлении. Помещение в посадочное место кристалла с непрозрачной подложкой приводит к несколько меньшему эффекту сужения диаграммы направленности и увеличения осевой силы света.

Одновременно с увеличением силы света и сужением диаграммы направленности излучения применение описанного кристаллодержателя в металло-стеклянных конструкциях приводит к улучшению восприятия излучения за счет увеличения светящейся площади и повышения контрастности. Кристалл и светящееся кольцо отражателя разделены более темным кольцом. Наличие на светящейся поверхности ярких и темных участков увеличивает ее контрастность и способствует лучшему визуальному восприятию [1].

Значительное перераспределение светового излучения осуществляется полимерной линзой, которая формирует необходимую диаграмму направленности излучения. Форму полимерной линзы выбирают, как правило, такой, что излучающий кристалл располагается между фокусом преломляющей поверхности, образованной полусферической линзой, и центром этой линзы. Расстояние от центра кристалла до центра сферической поверхности определяется в зависимости от заданной диаграммы направленности излучения.

Для диодов с углом излучения 5—15° по половинному уровню от максимального значения силы света наиболее целесообразно использовать величину S/R = 1,9 — 2,0 [1] (рис. 1 Приложения). Конкретные значения S/R обычно подбирают с учетом действия отражателя света и рассеивающего эффекта, возникающего при введении в компаунд диспергирующего наполнителя.

В качестве материала для полимерной герметизации светоизлучающих диодов в большинстве случаев используется эпоксидный компаунд на основе прозрачной смолы.Компаунд отличается весьма высоким светопропусканием. Хранение образцов компаунда при температуре +70-80°C практически не приводит к ухудшению светопропускания. Снижение светопропускания начинает наблюдаться при длительном хранении при температуре +100°C и выше, причем наибольшее поглощение света наблюдается в коротковолновой части видимого спектра. Введение красителя (например, красного) вызывает резкое увеличение поглощения коротковолнового света, но практически не влияет на поглощение света длинноволновой части видимого диапазона. Введение красителей способствует повышению контрастности свечения за счет поглощения рассеянного света окружающего пространства.

Для изготовления сигнальных СИД, как правило, применяется компаунд, диспергированный светорассеивающим наполнителем. Наполнитель позволяет увеличить размер светящегося пятна и расширить диаграмму направленности излучения (увеличить угол излучения). Одновременно он резко понижает интенсивность отраженного диодом внешнего света и, тем самым, снижает эффект отсвечивания для невключенных диодов.

Вывод света из полупроводника

Из светоизлучающего кристалла может быть выведена только часть генерируемого р — n - переходом излучения в связи со следующими основными видами потерь:

1) потери на внутреннее отражение излучения, падающего на границу раздела полупроводник — воздух под углом, большим критического;

2) поверхностные потери на френелевское отражение излучения, падающего на границу раздела под углом, меньшим критического;

3) потери, связанные с поглощением излучения в приконтактных областях;

4) потери на поглощение излучения в толще полупроводника.

Наиболее значительны потери на полное внутреннее отражение излучения. В связи с большим различием показателей преломления полупроводника nп и воздуха nв доля выходящего излучения определяется значением критического угла Qпр между направлением светового луча и нормалью к поверхности:

Qпр=arcsin n-1,

где n=nn/nв.

Для полупроводников GaAs и GaP значения показателя преломления составляют соответственно 3,54 и 3,3, а значения критического угла Qпр равны примерно 16 и 17,7°.

Излучение, падающее на поверхность раздела полупроводник — воздух под углом, меньшим критического, выводится из кристалла, а под углом, большим критического, испытывает полное внутреннее отражение. Если коэффициент поглощения света веществом кристалла велик, то все отраженное световыводящей поверхностью излучение поглотится внутри кристалла. Если же полупроводник прозрачен для генерируемого излучения, то свет, отраженный верхней, нижней, а также боковыми гранями кристалла, может повторно (и не один раз) падать на светоизлучающую поверхность частично выводиться из кристалла в соответствии с долей света, подходящей к световыводящей поверхности под углом, меньшим критического.

Долю светового излучения, которая может быть вы ведена через верхнюю поверхность кристалла плоской конфигурации при первом падении световой волны, определяют по формуле

F= sin2 (Qпр/2) Тср,

где Тср — средний коэффициент пропускания света по­верхностью кристалла для лучей, падающихна границу раздела под углом, меньшим критического. Коэффи­циент пропускания света, падающего нормально к поверхности, определяется по формуле Френеля

Т=(n - 1)2/(1 + n)2.

Так как вблизи критического угла про­пускание уменьшается, то можно ожидать средний коэффициент пропускания соответственно Т»0,67 и 0,695 [1].

Значение величины F для таких полупроводников, как GaAs и GaP, находится в пределах 1,3—1,65% [1]. Малое значение величины F для кристаллов плоской конфигурации послужило причиной поиска различных путей повышения внешней оптической эффективности светоизлучающих диодов. Существует несколько таких путей, кратко их рассмотрим [1]:

1. Применение такой геометрии кристалла, чтобы большая часть излучаемого p—n - переходом света па­дала на границу раздела под углом, меньшим критиче­ского. В качестве примеров такой геометрии могут служить полусферический кристалл, усеченная сфера (сфера Вейерштрасса) и другие. В этих конструкци­ях кристалла размер р—n - перехода существенно мень­ше диаметра полусферы, что и позволяет получать ма­лое отклонение падающего на поверхность луча от нор­мали к поверхности. Если провести расчет, при некоторых допущенных (не учитывать поглощение света в толще материала, отраженное поверх­ностью полупроводника излучение считать полностью поглощенным), то он покажет, что использование кристаллов полусферической геометрии позволяет увеличить вывод излучения из кристалла в воздух до 34 % всего генерируемого излучения. Полусферическую конфигурацию кристалла эффективно применять в тех случаях, когда поглощение света в толще полупроводника мало. Такие условия возникают при использовании структур GaAs: Si, GaP: Zn, 0; GaP: N и др.

2. Помещение кристалла в среду с показателем преломления nв<n<nn для увеличения критического угла. Если в качестве среды использовать прозрачный эпоксидный компаунд с показателем преломления nк=1,5—1,6, то критический угол Qпр возрастает до 25—30°. В этом случае выход излучения из кристалла в окружающую среду (в данном случае в компаунд) возрастет в 2,5—3 раза. Если прибор предназначен для вывода излучения в воздух, то для сохранения коэффициента вывода излучения конфигурация полимерного покрытия должна быть такой, чтобы свет падал на поверхность раздела компаунд — воздух под углом, меньшим критического для этой границы. Еще более положительный эффект может дать применение прозрачного купола из стекла с показателем преломления n=2—3.

3. Нанесение антиотражающих покрытий на поверхность кристалла для снижения потерь на отражение света, падающего на световыводящую поверхность под углом, меньшим критического (аналогично просветлению оптики). Таким путём удается увеличить выход излучения на 20—30 %.         

4. Применение специальной конфигурации плоского кристалла для обеспечения "внутренней фокусировки" излучения и увеличения доли генерируемого света, падающего на световыводящую поверхность под углом, меньшим критического.

5. Создание омических контактов, занимающих не­значительную часть площади грани кристалла, с целью уменьшения поглощения света в кристалле.

6. Создание диффузно-рассеивающей излучающей поверхности с целью повышения внешнего квантового выхода излучения.

Если угловое распределение фотонов, выходящихизактивной области, имеет сферическую симметрию, то создание днффузно-рассеивающей поверхности улучшает условия вывода излучения для косых лучей. Сферическая симметрия генерируемого излучения внутри кристалла возникает в диодах с низким самопоглощением излучения в активной области. В результате создания диффузно-рассеивающей поверхности диодов с низким самопоглощением излучения экспериментально получено увеличение внешнего квантового выхода излучения на 25—40 %.

7. Создание многослойных структур переменного состава, позволяющих получить направленные световые потоки и суженную диаграмму направленности излучения.

Большие возможности получения направленных световых потоков создает эффект “оптического ограничения”, возникающий в двойных гетероструктурах из-за различий в показателях преломления полупроводников различного состава. Эффекту оптического ограничения, или волноводному эффекту, благоприятствует такое распределение показателя преломления, когда он больше в волноводном слое по сравнению с окружающими слоями. Фотоны, генерируемые в активной области, распространяются вдоль волновода с многократным отражением от границ с ограничивающими слоями. Достаточное оптическое ограничение излучения достигается различием показателей преломления волновода и ограничивающих слоев около 0,15—0,2. Вследствие эффекта оптического ограничения резко уменьшаются дифракционные потери излучения, а также сужается диаграмма направленности излучения в направлении, перпендикулярном плоскости р—n - перехода. Сужение диаграммы направленности излучения позволяет повысить эффективность ввода излучения в волокно в системах оптической связи.

 

Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...