Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

Особенности электроискровой и электроимпульсной обработки




 

В зависимости от условий обработки, применяемых режимов, оборудования и технологических приемов, а также получаемых технологических характеристик эрозионную обработку электрическими разрядами подразделяют на электроискровую и электроимпульсную, а в зависимости от частоты повторения разрядов на низко-, средне- и высокочастотную.

Электроискровая обработка основана на использовании электрических импульсных разрядов малой длительности (от долей мкс до нескольких сотен мкс) и малой энергии (до 4-5 Дж), следующих с большой скважностью и высокой частотой (до 1,5×106 кГц). Обработку производят при сравнительно невысоких напряжениях, обычно не превышающих 250 В. При этих напряжения расстояние между электродами невелико и составляет несколько сотых долей миллиметра. Затраты энергии на съем 0,1 кг металла составляет 4-5 кВт×ч.

Этот вид обработки применяется преимущественно для прецизионной обработки небольших деталей радиоэлектронной промышленности, топливной аппаратуры (мелкие отверстия, шлифовальные операции), вырезка фасонных контуров твердосплавных вырубных штампов непрофилированным (проволочным) электродом. При этом способе обработки достигается относительно низкая шероховатость Ra = 1; 2; и высокая точности обработки. Для получения наибольшей производительности при съёме металла с заготовки и наименьшего износа инструмента электрод-инструмент подключают к отрицательному полюсу генератора катоду, а заготовку – к положительному полюсу – аноду.

Электроимпульсная обработка представляет собой разновидность электроэрозионной oобработки. Она характеризуется большей скоростью съема металла при относительно высокой шероховатости обработанной поверхности. Соответственно и режимы обработки, форма используемых при обработке импульсов имеют существенные различия. В результате увеличения вводимой в зону импульсной обработки электрической мощности скорость съема металла по сравнению со скоростью съема при электроискровой обработке повышается в 8-10 раз.

Увеличение длительности импульсов при низкой скважности и устранении обратной полуволны напряжения приводит к резкому снижению износа электрода-инструмента. В отличии от электроискровой обработки здесь применяется обратная полярность: анод-инструмент, катод-деталь. Благодаря высоким скоростям съема металла при снижении относительного износа инструмента становится возможной обработка фасонных поверхностей большой площади, требующих значительного съёма металла. Высокий КПД генератора импульсов, применяющегося при импульсной обработке, обеспечивает проведение обработки при пониженном удельном расходе электрической энергии.

Процесс импульсной обработки, как и все электроэрозионные процессы, основан на расплавлении малых частиц металла в зоне электрических разрядов. Чем выше частота разрядов, тем ниже (при прочих равных условиях) шероховатость поверхности. Поэтому при электроимпульсной обработке используют токи повышенной частоты, получаемые от специальных генераторов.

Режимы электроимпульсной обработки отличается от режимов электроискровой обработки применением пониженных на­пряжений и относительно большими значениями средних токов. Так, для генераторов импульсов типа МГИ верхний предел регулирования напряжения составляет 24-26 В, а нижний 11-12 В. При напряжении менее 11 В производительность и стабильность процесса резко снижаются. Скорость съема металла при электроимпульсной обработке зависит главным образом от силы тока. При достаточной мощности источника питания величину тока ограничивают в соответствии с размерами обрабатываемой поверхности, так как повышение силы тока сверх оптимальной приводит к оплавлению заготовки, быстрому износу электрода-инструмента и потере стабильности процесса.

Технологические схемы электроэрозионной обработки. Электроэрозионная обработка может осуществляться профилированным или не профилированным электродом-инструментом. В первом случае его размеры и форма рабочих поверхностей определяются в соответствии с заданной поверхностью изготовляемой детали (рис.4.3). Во втором – электрод-инструмент имеет простейшую конфигурацию (проволока, диск или стержень), а его размеры лишь частично связаны с размерами электрода-детали (рис.4.4).

 

 

Рис.4.3. Схемы электроэрозионной обработки профилированным электродом: 1 – заготовка; 2 – электрод-инструмент; 3 – диэлектрическая жидкость; Sпp – направление подачи инструмента; методы прямого (а-г) и обратного (д) копирования; е – прошивание отверстий с криволинейной осью

 

 

Рис.4.4. Схемы электроэрозионной обработки непрофилированным электродом: а – вырезание сложнопрофильных деталей; б – резка заготовки; в – вырезка паза; г – электроэрозионное шлифование; д – растачивание; 1 – заготовке; 2 – не профилированный электрод; 3 – диэлектрическая жидкость

 

Формообразование обрабатываемой детали электроэрозионным методом можно осуществить по трем схемам.

1. Копирование формы электрода-инструмента, представляющего собой обратное отображение формы детали. При этой схеме обработки путём поступательного движения электрод-инструмент внедряется в заготовку по мере удаления металла под воздействием импульсов электрической энергии.

2. Взаимное перемещение заготовки и электрода-инструмента по определенному закону. Схема формообразования имеет сходные черты с некоторыми процессами механической обработки. Съем металла с заготовки, в отличие от механических процессов, осуществляется за счет эрозии удаляемого металла под действием подводимых импульсов электрической энергии.

3. Сочетание обеих схем формообразования. Осуществляя взаимное перемещение специального инструмента и заготовки по определенному закону, получают изделие сложной формы. Эта схема требует сложного оборудования и электродов-инструментов. Наиболее широкое распространение в практике получила первая схема формообразования, а выполняемые с её помощью операции называют копировально-прошивочными. Электроэрозионное прошивание круглых отверстий сплошным электродом-инструментом - одна из наиболее широко применяемых в машиностроении операций. Ее частным случаем является прошивание отверстий с криволинейной осью. Принципиальные схемы этих операций показаны на рис.4.3. Последнюю из этих операций производят аналогично первой, но электрод-инструмент, являющийся катодом, имеет криволинейную форму, повторяемую в изделии.

По второй технологической схеме электроэрозионной обработки проводят резание с использованием в качестве электрода инструмента металлического диска или проволоки. Обработка проволочным электродом-инструментом позволяет вырезать детали со сложным контуром высокой точности. Для нее характерны доступность и относительная несложность автоматизации движе­ния подачи по заданной программе. Недостатком операций по этой схеме является ограничение их использования только вырезными или отрезными работами.

Операции третьей схемы электроэрозионной обработки получили наименьшее распространение. Они используются при обкатке (рис.4.5), электроэрозионной правке фасонных электроалмазных кругов, образовании в стальных и твердосплавных роликах и валиках, узких (менее 0,5 мм) канавок и т.д.

 

 

Рис.4.5. Схема формообразования обкатыванием: 1 – заготовка; 2 – электрод-инструмент; 3 – диэлектрическая жидкость; Sпр, Sкр – направление подачи

 

Электроэрозионное шлифование используется для обработки заготовок из труднообрабатываемых металлов и твёрдых сплавов. Удаление металла при электроэрозионном шлифовании происходит под воздействием импульсных разрядов между вращающимся электродом-инструментом и обрабатываемой заготовкой, а не в результате механического воздействия. Электроэрозионное шлифование подразделяется на круглое (наружное торцевое в внутреннее) и плоское шлифование. Оно осуществляется по схеме обычного абразивного шлифования. В связи с этим для электроэрозионного шлифования могут быть применены дисковые чашечные, цилиндрические и брусковые электроды-инструменты. Обработку производят при напряжении постоянного тока 25-30 В и ограничении тока до 300 А. Ток изменяется в пределах 5-300 А в зависимости от режима процессе.

Элементы электроэрозионного станка. Процесс электроэрозионной обработки происходит при объединении в одно целое генератора импульсов, системы автоматического регулирования межэлектродного промежутка, в также электроэрозионного станка. Последний должен обеспечить необходимое взаимное расположение обоих электродов, их закрепление и относительное перемещение, подвод к ним питания от генератора импульсов, заданные условия для протекания электрических разрядов в рабочей жидкости, условия наблюдения за процессом обработки с соблюдением правил безопасности.

Генератор импульсов располагают в станине станков. Если этого не позволяют размеры генератора импульсов, то его выполняют как отдельный агрегат и располагают возможно ближе к станку. Электрическую цепь между генератором импульсов и электродами делают, по возможности короче и выполняют ее многожильными коаксиальными проводами для уменьшения влияния поверхностного эффекта.

Электроэрозионные станки снабжены специальными ваннами для обеспечения условий протекания электрических разрядов в рабочей жидкости. У одного тапа станков имеются стол, служащий для установки и закрепление детали, и рабочая головка с несущим элекгрод-инструментом, закрепленном в электродержателе. Стол и рабочая головка смонтированы на общем угловом кронштейне. После закрепления и выверки взаиморасположения электрода-заготовки и электрода-инструмента кронштейн перед началом электроэрозионной обработки вместе с деталью и электродом-инструментом погружают в заполненную рабочей жидкостью ванну. У станков этого типа имеется недостаток – при опускания кронштейна в ванну может возникнуть дополнительная погрешность. У станков другого типа, лишенных указанного недостатка, кронштейн с закрепленным на нем электродом-инструментом и деталью остается неподвижным, а перед электроэрозионной обработкой поднимается заполненная рабочей жидкостью ванна.

Необходимое движение электрода-инструмента обеспечивается приводом его подачи. Контроль электрических параметров процесса электроэрозионной обработки проводится по показаниям электрических приборов (вольтметра и амперметра). Кроме регулирования электрического режима в установках электроэрозионной обработки необходимо осуществлять автоматическое регулирование перемещения электрода-инструмента. Для этого существует система автоматического регулирования межэлектродного промежутка. Она должна удовлетворять следующим основным требованиям: точно поддерживать заданное значение управляемой величины, определяющей установленный зазор; обладать малой инерционностью всех своих элементов; быть малогабаритной, экономичной, недорогой в изготовлении, простой и надежной в работе.

Существующие станки для электроэрозионной обработки условно делят на два типа: копировально-прошивочные и для обработки непрофилированным инструментом. Первые предназначены для создания полостей сложной формы, прошивания сложно-контурных окон фасонных и прямолинейных щелей, отверстий цилиндрической и более сложной конфигурации и др.

Электроэрозионный копировально-прошивочный станок включает в себя станину, рабочий стол для крепления детали, ванну с рабочей жидкостью, устройства вертикального, поперечного и продольного перемещений электрода-инструмента, генератор импульсов, блок управления станком, бак с рабочей жидкостью и вспомогательные устройства.

В станках для обработки непрофилированным инструментом тонкая медная, латунная или вольфрамовая проволока перематывается с одной катушки на другую. Электрод-заготовка крепится на рабочем столе, который может перемещаться по координатам X и Y соответствующими приводами, работающими по командам от системы управления. Электродная проволока используется однократно.

 

Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...