Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

Классификация моторных масел отечественного производства.

Моторные масла

 

Выполнил: Покусаев М.А.

Группа: АТ-1201

Преподаватель: Галиев И.Р.

 

 

Тольятти 2015г.

 

Назначение моторных масел – обеспечивать жидкостное трение деталей двигателя и снижать их износ за счет создания надежного масляного слоя и прочной масляной пленки.

Кроме этого, моторные масла обеспечивают уплотнение зазоров в деталях цилиндро-поршневой группы, охлаждение и очищение от продуктов износа трущихся поверхностей, защиту деталей от коррозии.

 

Моторные масла подразделяются на минеральные (нефтяные), синтетические и полусинтетические.

Минеральные масла получают фракционной перегонкой мазута, образующегося после прямой перегонки нефти.

 

Синтетические масла получают синтезом различных углеводородов и органических соединений. Синтетические масла по эксплуатационным характеристикам значительно лучше минеральных. Они обладают более высокими вязкостно-температурными свойствами, срок их службы в несколько раз превышает срок службы минеральных масел и составляет от 20 до 80 тыс. км. Синтетические масла имеют на 30-40% меньше в сравнении с минеральными расход масла на угар.

Полусинтетические масла получают смешиванием высококачественных минеральных масел с синтетическими компонентами. По качеству полусинтетические масла имеют преимущества перед минеральными, по стоимости значительно ниже чем синтетические.

В зависимости от назначения моторного масла подразделяются:

а) на масла для дизельных двигателей;

б) масла для бензиновых двигателей;

в) универсальные моторные масла, которые применяются в системах смазки и бензиновых, и дизельных двигателей.

По температурным пределам работоспособности моторные масла подразделяются на летние, зимние и всесезонные.

Нормируемыми показателями качества моторных масел являются кинематическая вязкость, индекс вязкости, температура застывания, зольность, коррозионность, содержание механических примесей и воды. Вязкость — внутреннее трение жидкого смазочного материала, возникающее между его молекулами и слоями при их относительном перемещении под воздействием внешней силы. Разделяется на динамическую и кинематическую вязкость.

Динамическая вязкость h – сила сопротивления двух слоев масла площадью 1 см2, находящихся на расстоянии 1 см друг от друга и передвигающихся один относительно другого под воздействием внешней силы со скоростью 1см\сек. Единица измерения – Па.c.

Кинематическая вязкость — основной эксплуатационный параметр для всех видов моторных и трансмиссионных масел — отношение динамической вязкости (h) к его плотности. Единица измерения – мм2\с (сантистокс (сст) – время истечения заданного объема масла в капиллярном вискозиметре под действием силы тяжести.

Кинематическая вязкость является основным и важнейшим показателем качества моторного масла, характеризующим его способность к надежному обеспечению жидкостного трения. Чем вязкость выше, тем прочнее масляная пленка на трущихся поверхностях, лучше уплотнение поршневых колец в цилиндре, меньше расход масла на угар и меньше прорыв газов из камеры сгорания в картер двигателя.

В то же время вязкость масла должна быть не выше той вязкости, при которой уже обеспечивается жидкостное трение: слишком вязкое масло вызывает рост потерь энергии на трение, ухудшается его циркуляция в системе смазки, и как следствие, не обеспечивается надежное жидкостное трение на поверхностях трения, ухудшается охлаждение деталей и очистка их от продуктов износа.

Чем выше скорость перемещения трущихся деталей и лучше качество обработки их поверхностей, тем меньшая требуется вязкость масла. При уменьшении нагрузки на детали вязкость может быть снижена, при увеличении зазоров между ними – увеличена.

Вязкость масла с понижением температуры резко возрастает, поэтому ее значение должно быть оптимальным, обеспечивающим жидкостное трение как при длительной работе прогретого двигателя, так и сразу после его холодного пуска при отрицательных температурах.

Кинематическая вязкость моторных масел, используемых в автотракторных двигателях, находится в пределах 4-14 мм2/с при 100°С. Масла с вязкостью 4-8 мм2/с используют в зимнее время, с вязкостью 10-14 мм2/с – в летнее время. Масла с зимними и летними характеристиками являются всесезонными (например 4з/10, где первая цифра указывает на зимний класс, вторая – на летний. Буква «З» обозначает применение в масле загущающих присадок).

Индекс вязкости (ИВ) — показатель, который характеризует зависимость вязкости масла от изменения температуры.

Чем выше индекс вязкости моторного масла, тем меньше повышается вязкость масла по мере понижения температуры, тем лучше обеспечиваются более легкий пуск двигателя при низких температурах и достаточная толщина масляной пленки.

Индекс вязкости у летних масел составляет 90 единиц, у зимних и всесезонных (загущенных) – 95 – 125 и выше. Конкретное значение индекса вязкости по маркам масел – в технических условиях и ГОСТах.

Температура застывания. Это температура, при которой масло теряет текучесть. Данный показатель характеризует прокачиваемость масла и его пусковые свойства.

У летних масел температура застывания от минус 15 до минус 20 оС, у зимних от минус 25 до минус 30 оС, у всесезонных достигает значения минус 45 оС. Конкретное значение температуры застывания по маркам масел – в технических условиях соответствующих ГОСТов.

Классификация моторных масел отечественного производства.

 

Обозначение моторных масел состоит из групп знаков, первая из которых обозначается буквой М (моторное) и не зависит от состава и свойств масла; вторая — цифрами, характеризующими класс кинематической вязкости; третья — прописными буквами и обозначает принадлежность к группе масел по эксплуатационным свойствам (М-8В).

Классы вязкости, показатели кинематической вязкости по ГОСТ 17479.1.85 и ориентировочное соответствие классов вязкости моторных масел настоящего стандарта классификации SAE J 300 JUN 87 (общепринятой в международном масштабе классификации моторных масел по вязкости Американского общества автомобильных инженеров) приведены в таблице 1.

 

Таблица 1. Общепринятой в международном масштабе классификации моторных масел по вязкости Американского общества автомобильных инженеров.

ГОСТ 17479.1.85 Класс вязкости по SAE
Класс вязкости Кинематическая вязкость при температуре
100°С Минус 18°С
3З Не менее 3,8   5W (-30о С)
4З Не менее 4,1   10W (-25о С)
5З Не менее 5,6   15W (-20о С)
6З Не менее 5,6   20W(-15о С)
  5,6-7,0  
  7,0-9,3  
  9,3-11,5  
  11,5-12,5  
  12,5-14,5  
  14,5-16,3  
  16,3-21,9  
3з/8 7,0-9,5   5W-20
4з/6 5,6-7,0   10W-20
4з/8 7,0-9,3   10W-20
4з/10 9,3-11,5   10W-30
5з/10 9,3-11,5   15W-30
5з/12 11,5-12,5   15W-30
5з/14 12,5-14,5   15W-40
6з/10 9,3-11,5   20W-30
6з/14 12,5-14,5   20W-40
6з/16 14,5-16,3   20W-40

 

 

Как видно из таблицы, для всех классов нормируются пределы кинематической вязкости при 1000С, а для зимних и всесезонных сортов дополнительно нормируется величина кинематической вязкости при -180С.

По кинематической вязкости отечественные моторные масла подразделяются на:

зимние масла класса вязкости 3з, 4з, 5з, 6з, 6, 8;

летние масла класса вязкости 10, 12, 14, 16;

всесезонные масла класса вязкости 33/8, 43/6, 43/8, 43/10, 53/12, 53/14, 63/10, 63/14, 63/16.

Для всесезонных масел, цифра в числителе характеризует зимний класс, а в знаменателе — летний; буква «з» указывает на то, что масло — загущенное, т.е. содержит загущающую (вязкостную) присадку. Так, всесезонное масло класса вязкости 5з/14 по кинематической вязкости при 1000С соответствует летнему маслу класса 14, а при минус 180С — зимнему маслу класса 5з.

Технология производства моторных масел.

Моторные масла получают из мазута - остатка первичной переработки нефти. Если нагревать мазут при атмосферном давлении, то многие индивидуальные углеводороды начинают разлагаться при более низкой температуре, чем их температура кипения. При понижении давления понижается температура кипения, что позволяет выделить нужные фракции. Процесс этот называется вакуумной разгонкой. Для его реализации сооружаются специальные установки, позволяющие из мазута получать различные по вязкости масла. Особенно четко удается произвести разгонку в установках с двукратным испарением, применяемым в современных нефтеперерабатывающих комплексах. Эти масла называются дистиметными маслами. Их получение предусматривает перегонку или испарение с последующей конденсацией отдельных фракций жидкостей или их смесей.

В результате вакуумной перегонки получают дистиметные масла, а оставшийся продукт (полугудрон и гудрон) используется для получения остаточных масел. Характерной особенностью дистиметных масел является их хорошие вязкостно-температурные свойства и высокая термоокислительная стабильность. Но в этих маслах мало соединений, обладающих высокой маслянистостью, т.е. прочностью масляной пленки.

Остаточные масла, наоборот, обладают высокой естественной маслянистостью, но плохими низкотемпературными и вязкостно-температурными свойствами. Высокая маслянистость остаточных масел связана с находящимися в них продуктами окислительной полимеризации (нефтяными смолами).

Существует две схемы переработки мазута - топливная и масляная. При масляной переработке получают три фракции: легкие дистиметные масла (выкипающие при 300-400С), средние (при 400-450С) и тяжелые (450-500С).

Для получения товарных марок масла подвергают сложным технологическим операциям. Для удаления нежелательных примесей масло очищают. Цель очистки - удаление нежелательных примесей (асфальто-смолистые вещества, непредельные углеводороды, нефтяные кислоты, сернистые и азотистые соединения, которые являются составной частью масел или образуются в них при вакуумной перегонке), отрицательно влияющих на работу смазываемых механизмов и машин.

Для улучшения низкотемпературных свойств масла подвергают депарафинизации и деасфальтизации. Очищенные продукты при необходимости смешивают для получения нужного условия вязкости. Дистиметные масла используют для приготовления масел, от которых не требуется особо высокой естественной прочности масляной пленки. Остаточные - для масел, высокая маслянистость которых имеет особое значение.. Например, для дизельных масел обычно смешивают дистиметные и остаточные масла. Масла, используемые в качестве основных моторных масел, называются базовыми маслами.

В практике используются следующие способы очистки: кислотно-щелочная, кислотно-контактная, селективная, депарафинизация и деасфальтизация.

При кислотно-щелочной очистке смолистые вещества масляного дистимета, взаимодействуя с серной кислотой, частично растворяются, а частично уплотняются с образованием асфальтов, которые переходят в кислый гидрон, после отделения которого масло обрабатывают раствором щелочи (NaOH), затем промывают водой и просушивают горячим воздухом. Серная кислота разрушает смолисто-асфальтовые и ненасыщенные соединения, которые вместе с непрореагировавшей кислотой выпадают в осадок, образуя кислый гидрон.

Для предотвращения возможности образования стойких водомасляных эмульсий обработку щелочного заменяют контактным фильтрованием с использованием отбеливающих глин, обладающих большой адсорбционной способностью поглощать Полярно-активные вещества, к которым относятся продукты взаимодействия с серной кислотой. Этот способ очистки называется кислотно-контактным. Причем очистка отбеливающими глинами может быть контактной и перколяционной. При первом способе глину перемешивают с очищаемым маслом, а при втором масло пропускают через слой гранулированного адсорбента при температуре 20-100С.

Применение при очистке моторных масел серной кислотой имеет существенные недостатки:

При современных масштабах производства моторных масел это приводит к огромным безвозвратным расходам серной кислоты. Кислый гудрон, который является отходом при этом способе очистки, очень токсичен и вреден; дальнейшее использование ее по ряду причин нерентабельно, и его огромные скопления являются источником очень вредного воздействия на окружающую среду.

При селективной очистке применяют растворители, которые растворяют нежелательные примеси. В качестве селективных (избирательных) растворителей используют фурфурол (150-400% от массы очищаемого масла), фенол (100-120% от массы масла), нитробензол, пропан и т.д. Процесс селективной очистки проходит при температуре 50-120С.

Принцип селективной очистки заключается в следующем. Подбирают растворитель, который при определенной температуре и количественном соотношении с очищаемым маслом выборочно растворяет в себе все вредные примеси и плохо или совсем не растворяет очищаемый продукт.

При смешивании очищаемого масла с селективным растворителем основная часть вредных примесей растворяется и переходит в растворитель, который, не смешиваясь с маслом, легко с ним разделяется при отставании. Получается слой очищенного масла (рафинадный слой) и слой растворителя с вредными, удаленными из масла примесями. Этот слой называется экстрактом. Слои разделяют. Слой очищенного масла доочищают отбеливающими глинами, а экстракт подвергают регенерации, при которой селективный растворитель отделяется от вредных продуктов и опять вводится в процесс очистки.

Это современный и эффективный способ очистки масел. Особенностью этого метода является возможность в процессе очистки многократно использовать селективные растворители.

Для улучшения низкотемпературных свойств масел их подвергают деасфальтизации и депарафинизации. Удаление из масла этих соединений, обладающих высокой температурой застывания, повышает низкотемпературные свойства масел.

Деасфальтизацию проводят с помощью жидкого пропана, который под давлением 2-4 Мпа смешивают с очищенным маслом в пропорциях от 5:1 до 10:1. Процесс протекает в специальных колоннах. Очищаемое масло поступает в среднюю часть колонны, пропан - в нижнюю. Вводится битум из самого нижнего уровня колонны. Раствор очищенного от асфальта масла выводится из верхней части колонны, после чего очищенное масло отделяется от растворителя.

Депарафинизация масла, т.е. выделение из него парафина и церезина, проводят путем его глубокого охлаждения. Перед охлаждением в масло добавляют растворители и смесь нагревают на 15-20С выше температуры полного растворения парафина и церезина. Затем смесь подвергают охлаждению и фильтрации или центрифугированию. Застывший парафин и церезин остаются в фильтрах. Освобожденное от парафина и церезина масло при его охлаждении в условиях реальной эксплуатации обладают повышенной тягучестью, что значительно облегчает пуск двигателя при низких температурах.

Необходимые эксплуатационные свойства масло приобретает после последовательного применения нескольких процессов переработки масляного сырья. Однако самые совершенные методы перегонки и очистки не позволяют получать масла, полностью удовлетворяющие требованиям к их качеству. Для улучшения эксплуатационных свойств - одного или нескольких - к маслам добавляют в небольших количествах (от 0,01 до 10%, а иногда и более) различных химических соединений - присадки.

В последнее время появляются методы очистки масел, основанные на его фильтрации через специальные мембраны, фильтрующие на молекулярном уровне, которые, например, пропускают молекулу углеводородов и задерживают молекулу продуктов окислительной полимеризации и другие нежелательные примеси. Этот метод еще не получил широкого применения при очистке масел.

 

Список используемой литературы:

1)Справочник по топливу, маслам и техническим жидкостям. - М.:Колос, 1982. - 208 с.

2)Григорьев М.А., Бунаков Б.М., Долецкий В.А. Качество моторных масел и надежность двигателей. М.:Издательство стандартов, 1981. - 232 с.

3)Автотрактоные топлива и смазочные материалы. Д.С. Колосюк, А.В. Кузнецов. - К.:Выш шк. Головное издательство, 1987. - 191 с.

4)Топлива, смазочные материалы, технические жидкости. Справочное издание. /Под редакцией В.Н. Школьникова. - М.: Химия, 1989

5)Покровский Г.П. Топливо, смазочные материалы и охлаждающие жидкости. - М.:Машиностроение.1985

 

Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...