Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

Методика проведения XYZ анализа

Методика проведения АВС анализа

Идея метода АВС анализа строится на основании принципа Парето: «за большинство возможных результатов отвечает относительно небольшое число причин», в настоящий момент более известного как «правило - 20 на 80».

Данный метод анализа получил большое развитие, благодаря своей универсальности и эффективности. Результатом АВС анализа является группировка объектов по степени влияния на общий результат.

Пример таблицы MS Excel (упакован в формат Zip 19Kb) по проведению анализа АВС. Исходными данными являются результаты деятельности региональной розничной сети за 1 квартал 2002 года.

Первый шаг: Определить объекты анализа

Клиент, Поставщик, Товарная группа/подгруппа, Номенклатурная единица, и т.п.

Второй шаг: Определить параметр, по которому будет проводиться анализ объекта

Средний товарный запас, руб.; Объем продаж, руб.; Доход, руб.; Количество единиц продаж, шт.; Количество заказов, шт. и т.п.

Третий шаг: Сортировка объектов анализа в порядке убывания значения параметра.

Четвертый шаг: Определение групп А, В и С.

Для определения принадлежности выбранного объекта к группе необходимо:

1. Рассчитать долю параметра от общей суммы параметров выбранных объектов

2. Рассчитать эту долю с накопительным итогом.

3. Присвоить значения групп выбранным объектам.

Рекомендуемое распределение:

Группа А – объекты, сумма долей с накопительным итогом которых, составляет первые 50 % от общей суммы параметров.

Группа В – следующие за группой А объекты, сумма долей с накопительным итогом которых, составляет от 50 % до 80 % от общей суммы параметров.

Группа С – оставшиеся объекты, сумма долей с накопительным итогом которых, составляет от 80 % до 100 % от общей суммы параметров.

 

Общие рекомендации:

Настоятельно рекомендую творчески подойти определению объектов и параметров анализа. Не бойтесь экспериментировать. Сгруппировав товар по одному параметру, сопоставьте полученный результат с другими параметрами. Группа С может приносить Вам 20% дохода, составлять 50% товарного запаса и занимать 80% площади склада.

Пример:

АВС анализ товаров по объему продаж показывает, какие товары обеспечивают 80% оборота Компании. Проанализируйте те же товары, но по количеству единиц (или количеству заказов по ним) и в результате Вы получите 20% товаров покупаемые 80% клиентов, а это уже привлекательность товара для клиента и товарооборот Компании. Этот же результат можно использовать при планировании размещения товара на складе или в торговом зале магазина. Анализ товаров по доходу покажет, на чем Вы зарабатываете деньги, аналогичный анализ по затратам позволит понять куда Вы их тратите.

Если Вы занимаетесь продажей кафельной плитки или одежды, и Вам сложно собрать данные по номенклатурным позициям, сделайте анализ по коллекция, а затем внутри коллекции..

Важно: Помните, непродуманное сокращение товаров группы С (20% дохода компании) приведет к тому, что через некоторое время оставшиеся товары распределятся по тому же закону, но общий результат вашей деятельности для компании может снизиться на 50%.

Методика проведения XYZ анализа

Основная идея XYZ анализа состоит в группировании объектов анализа по мере однородности анализируемых параметров (по коэффициенту вариации).

Формула для расчета коэффициента вариации:

, где

хi значение параметра по оцениваемому объекту за i-тый период,

х — среднее значение параметра по оцениваемому объекту анализа,

n — число периодов.

Значение квадратного корня есть не что иное, как стандартное отклонение вариационного ряда. Чем больше значение стандартного отклонения, тем дальше от среднеарифметического значения находятся анализируемые значения. Стандартное отклонение - это абсолютная мера рассеивания вариантов ряда. Если стандартное отклонение равно 20, то при среднеарифметических значениях 100 и 100 000 это будет иметь совершенно разный смысл. Поэтому, при сравнении вариационных рядов между собой используют коэффициент вариации. Коэффициенты вариации 20% и 0,2% позволяют понять, что во втором случае значения анализируемых параметров значительно меньше отличаются от среднеарифметического значения.

Пример таблицы MS Excel (упакован в формат Zip 26Kb) по проведению анализа XYZ. Исходными данными являются результаты деятельности региональной розничной сети за 1 квартал 2002 года.

Первый шаг: Определить объекты анализа

Клиент, Поставщик, Товарная группа/подгруппа, Номенклатурная единица, и т.п.

Второй шаг: Определить параметр, по которому будет проводиться анализ объекта

Средний товарный запас, руб.; Объем продаж, руб.; Доход, руб.; Количество единиц продаж, шт.; Количество заказов, шт., и т.п.

Третий шаг: Определить период и количество периодов, по которым будет проводиться анализ.

Неделя, Декада, Месяц, Квартал/Сезон, Полугодие, Год

Общие рекомендации:

Данный метод анализа имеет смысл, если количество анализируемых периодов больше трех, чем больше количество периодов, тем более показательными будут результаты. При этом сам период должен быть не меньше чем горизонт планирования принятый в Вашей компании.

Например: Анализ продаж молока и хлеба в розничном магазине можно проводить по сумме продаж за неделю. Поставки осуществляются каждый день, продажи тоже. Но если сопоставить между собой продажи молока и водки Абсолют (которую заказывают раз в месяц и продают 1 бутылку в 2 недели), то результат будет менее показательный. При таком периоде 99% ассортимента магазина попадут в категорию «Z», 1% в категорию «Y», и какой можно сделать вывод? Вы работе в экстремальных условиях на непрогнозируемом рынке? В данном случае оптимально будет провести анализ по ежемесячным продажам.

Более интересная ситуация возникает при анализе продаж и товарных запасов в компаниях, торгующих бытовой техникой, строительными материалами, запасными частями для автомобилей и т.п. Финансовый план в компании часто составляется на месяц, а реально необходимый горизонт планирования должен быть на полгода. Анализ данных с периодом меньше чем квартал просто не имеет смысла. Все товары попадают в категорию «Z».

Четвертый шаг: Определить коэффициент вариации для каждого объекта анализа.

Формула коэффициента вариации:

где,

хi значение параметра по оцениваемому объекту за i-тый период,

х — среднее значение параметра по оцениваемому объекту анализа,

n — число периодов.

Общие рекомендации:

1. Не пытайтесь написать всю формулу в одной ячейке, разбейте формулу на несколько ячеек.

2. Возведение в квадрат - ^2, извлечение корня - ^0,5

Пример формулы подкоренного выражения =(( C3-G3)^2+(D3-G3)^2+(E3-G3)^2)/3,

Затем извлечение корня и деление на среднее значение - =H3^0,5/G3

3. Обратите особое внимание на объекты анализа, у которых есть периоды с нолевыми значениями. Либо исключите их из анализа, либо измените формулу расчета коэффициента вариации.

Рекомендации для продвинутых пользователей:

В MS Excel есть пара стандартных формул значительно облегчающих жизнь: =КВАДРОТКЛ(ряд до 30 значений) – это числитель подкоренного выражения

Вся формула примет вид: =(КВАДРОТКЛ(C3:E3)/СРЗНАЧ(C3:E3))^0,5/ СРЗНАЧ(C3:E3)

и = ДИСПР(ряд до 30 значений) – это все подкоренное выражение.

Теперь формула станет совсем компактной:

= ДИСПР(C3:E3)^0,5/СРЗНАЧ(C3:E3)

Самый простой вариант:

Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...