Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

сделать схематический чертеж.

СПИСОК ЛИТЕРАТУРЫ

1. Бугров Я.С., Никольский С.М. Высшая математика: Учеб.для вузов:в 3т.-5-е изд.,стер.-М.:Дрофа.- (Высшее образование. Современный учебник).т.2. Дифференциальное и интегральное исчисление.-2003.-509 с.

2. Пискунов Н.С. Дифференциальное и интегральное исчисление: Учеб. пособие: в 2-х т.- Изд. стер. –М.: Интеграл – Пресс.Т.1. -2001.- 415 с.

3. Фихтенгольц Г.М. Курс дифференциального и интегрального исчисления. Учеб. для вузов: в 3-х томах. – 8-е изд.-М.: Физматлит. т.1 – 2001. -697 с.

4. Берман Г.Н. Сборник задач по курсу математического анализа: Учеб. пособие. -22-е изд., перераб.- СПб: Профессия, 2003.-432 с.

5. Кудрявцев Л.Д. Курс математического анализа. Учеб. для вузов: В 3-х томах. – 5-е изд., перераб. и доп. –М.: Дрофа. Т.1. – 2003.-703 с.

6. Ильин В.А., Позняк Э.Г. Основы математического анализа. Учеб. для вузов в 2-х частях. – 6-е изд. стер. –М. Физматлит, 2002, -646 с.

7. Данко П.Е. и др. Высшая математика в упражнениях и задачах (с решениями): в 2 ч./ Данко П.Е., Попов А.Г., Кожевникова Т.Я.-6-е изд..-М.: ОНИКС 21 век, ч.2. -2002.-416 с.

 

Решение типового варианта контрольной работы.

1. Вычислить пределы функций.

а) Найти .

Решение. Прежде всего, проверим, применимы ли к данной дроби теоремы о пределах, или мы имеем дело с неопределенностью. Для этого найдем пределы числителя и знаменателя дроби. Функции  и  являются бесконечно большими. Поэтому, , .

Следовательно, имеем дело с неопределенностью вида .

    Для раскрытия этой неопределенности и использовании теоремы о пределе отношения двух функций выделим в числителе и в знаменателе  в старшей для числителя и знаменателя степени в качестве сомножителя и сократим дробь.

Ответ. 0.

б) Найти .

Решение. Для раскрытия неопределенности  в этом случае, нужно разложить числитель и знаменатель на множители и сократить дробь на общий множитель.

Ответ. -9.

 Найти .

Решение. Для вычисления данного предела подставим значение  в функцию, стоящую под знаком предела. Получим,

.

Ответ. -3.

в) Найти .

Решение. Для раскрытия неопределенности  в этом случае, нужно умножить числитель и знаменатель на выражение, сопряженное числителю, а затем сократить дробь на общий множитель.

Ответ. .

г) Найти .

Решение. Для раскрытия неопределенности  в этом случае, нужно выделить первый замечательный предел:

Ответ. k

д) Найти .

Решение. Для раскрытия неопределенности  в этом случае, нужно произведение преобразовать в частное, то есть неопределенность  свести к неопределенности  или .

 

       Выделяем первый замечательный предел, то есть, умножаем числитель и знаменатель на . Получаем,

.

Ответ. .

 

е) Найти .

Решение. Для раскрытия неопределенности  в этом случае, нужно выделить второй замечательный предел: .

Ответ. .

ж) Найти

Решение. Для раскрытия неопределенности  в этом случае, нужно выделить второй замечательный предел: .

Ответ. .

  Найти

Решение. Подставим значение  в функцию, стоящую под знаком предела. Получим,

Ответ. .

2. Задана функция  и два значения аргумента .

Требуется:

- найти пределы функции при приближении к каждому из данных значений  слева и справа;

- установить является ли данная функция непрерывной или разрывной для каждого из данных значений ;

- сделать схематический чертеж.

Решение. Найдем левый и правый пределы в точке .

Левый предел конечен и равен 0, а правый предел бесконечен. Следовательно, по определению  точка разрыва второго рода.

Найдем левый и правый пределы в точке .

, т.е.  точка непрерывности функции .

Сделаем схематический чертеж.

Рис. 1

3. Функция задается различными аналитическими выражениями для различных областей независимой переменной.

Требуется:

1) найти точки разрыва функции, если они существуют;

2) найти скачок функции в каждой точке разрыва;

сделать схематический чертеж.

Решение. Функция  непрерывна для , функция  непрерывна в каждой точке из , функция  непрерывна в каждой точке интервала .

Точки, в которых функция может иметь разрыв, это точки  и , где функция меняет свое аналитическое выражение.

Исследуем точку .

, , . Таким образом, точка  есть точка непрерывности функции .

Исследуем точку .

, , . Таким образом, односторонние пределы существуют, конечны, но не равны между собой. По определению, исследуемая точка – точка разрыва первого рода. Величина скачка функции в точке разрыва  равен .

Сделаем схематический чертеж

Рис. 2


Контрольная работа №4.

Вариант 1

 

1. Вычислить пределы функций.

а) ;

б) ; ;

в) ;

г) ;

д) ;

е) ; .

 

2. Дана функция  и два значения аргумента .

Требуется.

1)Найти значение функции при стремлении аргумента к каждому из данных значений ;

2) Определить, является ли функция непрерывной или разрывной при данных значениях ;

3) Сделать схематический чертеж в окрестности точек  и .

, .

 

3. Для кусочно-заданной функции .

Требуется.

1) Найти точки разрыва функции, если они существуют;

2) Найти скачок функции в каждой точке разрыва;

3) Сделать схематический чертеж.

 

 

Контрольная работа №4.

Вариант 2

 

1. Вычислить пределы функций.

а) ;

б) ; ;

в) ;

г) ;

д) ;

е) ; .

 

2. Дана функция  и два значения аргумента .

Требуется.

1)Найти значение функции при стремлении аргумента к каждому из данных значений ;

2) Определить, является ли функция непрерывной или разрывной при данных значениях ;

3) Сделать схематический чертеж в окрестности точек  и .

, .

 

3. Для кусочно-заданной функции .

Требуется.

1) Найти точки разрыва функции, если они существуют;

2) Найти скачок функции в каждой точке разрыва;

3) Сделать схематический чертеж.

 

 

Контрольная работа №4.

Вариант 3

 

1. Вычислить пределы функций.

а)

б) ; ;

в) ;

г) ;

д) ;

е) ; .

 

2. Дана функция  и два значения аргумента .

Требуется.

1)Найти значение функции при стремлении аргумента к каждому из данных значений ;

2) Определить, является ли функция непрерывной или разрывной при данных значениях ;

3) Сделать схематический чертеж в окрестности точек  и .

, .

 

3. Для кусочно-заданной функции .

Требуется.

1) Найти точки разрыва функции, если они существуют;

2) Найти скачок функции в каждой точке разрыва;

3) Сделать схематический чертеж.

 

Контрольная работа №4.

Вариант 4

 

1. Вычислить пределы функций.

а) ;

б) ; ;

в) ;

г) ;

д) ;

е) ; .

 

2. Дана функция  и два значения аргумента .

Требуется.

1)Найти значение функции при стремлении аргумента к каждому из данных значений ;

2) Определить, является ли функция непрерывной или разрывной при данных значениях ;

3) Сделать схематический чертеж в окрестности точек  и .

, .

 

3. Для кусочно-заданной функции .

Требуется.

1) Найти точки разрыва функции, если они существуют;

2) Найти скачок функции в каждой точке разрыва;

3) Сделать схематический чертеж.

 

Контрольная работа №4.

Вариант 5

 

1. Вычислить пределы функций.

а) ;

б) ; ;

в) ;

г) ;

д) ;

е) ; .

 

2. Дана функция  и два значения аргумента .

Требуется.

1)Найти значение функции при стремлении аргумента к каждому из данных значений ;

2) Определить, является ли функция непрерывной или разрывной при данных значениях ;

3) Сделать схематический чертеж в окрестности точек  и .

, .

 

3. Для кусочно-заданной функции .

Требуется.

1) Найти точки разрыва функции, если они существуют;

2) Найти скачок функции в каждой точке разрыва;

3) Сделать схематический чертеж.

 

Контрольная работа №4.

Вариант 6

 

1. Вычислить пределы функций.

а) ;

б) ; ;

в) ;

г) ;

д) ;

е) ; .

 

2. Дана функция  и два значения аргумента .

Требуется.

1)Найти значение функции при стремлении аргумента к каждому из данных значений ;

2) Определить, является ли функция непрерывной или разрывной при данных значениях ;

3) Сделать схематический чертеж в окрестности точек  и .

, .

 

3. Для кусочно-заданной функции .

Требуется.

1) Найти точки разрыва функции, если они существуют;

2) Найти скачок функции в каждой точке разрыва;

3) Сделать схематический чертеж.

 

 

Контрольная работа №4.

Вариант 7

 

1. Вычислить пределы функций.

а) ;

б) ; ;

в) ;

г) ;

д) ;

е) ; .

 

2. Дана функция  и два значения аргумента .

Требуется.

1)Найти значение функции при стремлении аргумента к каждому из данных значений ;

2) Определить, является ли функция непрерывной или разрывной при данных значениях ;

3) Сделать схематический чертеж в окрестности точек  и .

, .

 

3. Для кусочно-заданной функции .

Требуется.

1) Найти точки разрыва функции, если они существуют;

2) Найти скачок функции в каждой точке разрыва;

3) Сделать схематический чертеж.

 

Контрольная работа №4.

Вариант 8

 

1. Вычислить пределы функций.

а) ;

б) ; ;

в) ;

г) ;

д) ;

е) ; .

 

2. Дана функция  и два значения аргумента .

Требуется.

1)Найти значение функции при стремлении аргумента к каждому из данных значений ;

2) Определить, является ли функция непрерывной или разрывной при данных значениях ;

3) Сделать схематический чертеж в окрестности точек  и .

, .

 

3. Для кусочно-заданной функции .

Требуется.

1) Найти точки разрыва функции, если они существуют;

2) Найти скачок функции в каждой точке разрыва;

3) Сделать схематический чертеж.

 

Контрольная работа №4.

Вариант 9

 

1. Вычислить пределы функций.

а) ;

б) ; ;

в) ;

г) ;

д) ;

е) ; .

 

2. Дана функция  и два значения аргумента .

Требуется.

1)Найти значение функции при стремлении аргумента к каждому из данных значений ;

2) Определить, является ли функция непрерывной или разрывной при данных значениях ;

3) Сделать схематический чертеж в окрестности точек  и .

, .

 

3. Для кусочно-заданной функции .

Требуется.

1) Найти точки разрыва функции, если они существуют;

2) Найти скачок функции в каждой точке разрыва;

3) Сделать схематический чертеж.

 

 

Контрольная работа №4.

Вариант 10

 

1. Вычислить пределы функций.

а) ;

б) ; ;

в) ;

г) ;

д) ;

е) ; .

 

2. Дана функция  и два значения аргумента .

Требуется.

1)Найти значение функции при стремлении аргумента к каждому из данных значений ;

2) Определить, является ли функция непрерывной или разрывной при данных значениях ;

3) Сделать схематический чертеж в окрестности точек  и .

, .

 

3. Для кусочно-заданной функции .

Требуется.

1) Найти точки разрыва функции, если они существуют;

2) Найти скачок функции в каждой точке разрыва;

3) Сделать схематический чертеж.

 

 

Контрольная работа №4.

Вариант 11

 

1. Вычислить пределы функций.

а) ;

б) ; ;

в) ;

г) ;

д) ;

е) ; .

 

2. Дана функция  и два значения аргумента .

Требуется.

1)Найти значение функции при стремлении аргумента к каждому из данных значений ;

2) Определить, является ли функция непрерывной или разрывной при данных значениях ;

3) Сделать схематический чертеж в окрестности точек  и .

, .

 

3. Для кусочно-заданной функции .

Требуется.

1) Найти точки разрыва функции, если они существуют;

2) Найти скачок функции в каждой точке разрыва;

3) Сделать схематический чертеж.

 

Контрольная работа №4.

Вариант 12

 

1. Вычислить пределы функций.

а) ;

б) ; ;

в) ;

г) ;

д) ;

е) ; .

 

2. Дана функция  и два значения аргумента .

Требуется.

1)Найти значение функции при стремлении аргумента к каждому из данных значений ;

2) Определить, является ли функция непрерывной или разрывной при данных значениях ;

3) Сделать схематический чертеж в окрестности точек  и .

, .

 

3. Для кусочно-заданной функции .

Требуется.

1) Найти точки разрыва функции, если они существуют;

2) Найти скачок функции в каждой точке разрыва;

3) Сделать схематический чертеж.

 

 

Контрольная работа №4.

Вариант 13

 

1. Вычислить пределы функций.

а) ;

б) ; ;

в)

г) ;

д) ;

е) ; .

 

2. Дана функция  и два значения аргумента .

Требуется.

1)Найти значение функции при стремлении аргумента к каждому из данных значений ;

2) Определить, является ли функция непрерывной или разрывной при данных значениях ;

3) Сделать схематический чертеж в окрестности точек  и .

, .

 

3. Для кусочно-заданной функции .

Требуется.

1) Найти точки разрыва функции, если они существуют;

2) Найти скачок функции в каждой точке разрыва;

3) Сделать схематический чертеж.

 

Контрольная работа №4.

Вариант 14

 

1. Вычислить пределы функций.

а) ;

б) ; ;

в) ;

г) ;

д) ;

е) ; .

 

2. Дана функция  и два значения аргумента .

Требуется.

1)Найти значение функции при стремлении аргумента к каждому из данных значений ;

2) Определить, является ли функция непрерывной или разрывной при данных значениях ;

3) Сделать схематический чертеж в окрестности точек  и .

, .

 

3. Для кусочно-заданной функции .

Требуется.

1) Найти точки разрыва функции, если они существуют;

2) Найти скачок функции в каждой точке разрыва;

3) Сделать схематический чертеж.

 

Контрольная работа №4.

Вариант 15

 

1. Вычислить пределы функций.

а) ;

б) ; ;

в) ;

г) ;

д) ;

е) ; .

 

2. Дана функция  и два значения аргумента .

Требуется.

1)Найти значение функции при стремлении аргумента к каждому из данных значений ;

2) Определить, является ли функция непрерывной или разрывной при данных значениях ;

3) Сделать схематический чертеж в окрестности точек  и .

, .

 

3. Для кусочно-заданной функции .

Требуется.

1) Найти точки разрыва функции, если они существуют;

2) Найти скачок функции в каждой точке разрыва;

3) Сделать схематический чертеж.

 

 

Контрольная работа №4.

Вариант 16

 

1. Вычислить пределы функций.

а) ;

б) ; ;

в) ;

г) ;

д) ;

е) ; .

 

2. Дана функция  и два значения аргумента .

Требуется.

1)Найти значение функции при стремлении аргумента к каждому из данных значений ;

2) Определить, является ли функция непрерывной или разрывной при данных значениях ;

3) Сделать схематический чертеж в окрестности точек  и .

, .

 

3. Для кусочно-заданной функции .

Требуется.

1) Найти точки разрыва функции, если они существуют;

2) Найти скачок функции в каждой точке разрыва;

3) Сделать схематический чертеж.

Контрольная работа №4.

Вариант 17

 

1. Вычислить пределы функций.

а) ;

б) ; ;

в) ;

г) ;

д) ;

е) ; .

 

2. Дана функция  и два значения аргумента .

Требуется.

1)Найти значение функции при стремлении аргумента к каждому из данных значений ;

2) Определить, является ли функция непрерывной или разрывной при данных значениях ;

3) Сделать схематический чертеж в окрестности точек  и .

Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...