Вычисление кеплеровых элементов
Кеплеровы элементы орбиты Материал из Википедии — свободной энциклопедии (перенаправлено с «Наклонение орбиты») Кеплеровские элементы орбиты, включая аргумент перицентра (рис.1) Части эллипса (рис.2) Кеплеровы элементы — шесть элементов орбиты, определяющих положение небесного тела в пространстве в задаче двух тел:
Первые два определяют форму орбиты, третий, четвёртый и пятый — ориентацию плоскости орбиты по отношению к базовой системе координат, шестой — положение тела на орбите. Содержание
Большая полуось Большая полуось — это половина главной оси эллипса (обозначена на рис.2 как a). В астрономии характеризует среднее расстояние небесного тела от фокуса.[ источник не указан 607 дней ] Эксцентриситет Эксцентрисите́т (обозначается «» или «ε») — числовая характеристика конического сечения. Эксцентриситет инвариантен относительно движений плоскости и преобразований подобия.[1] Эксцентриситет характеризует «сжатость» орбиты. Он выражается по формуле: , где — малая полуось (см. рис.2) Можно разделить внешний вид орбиты на пять групп:
Наклонение A — Объект Наклонение орбиты (накло́н орбиты, накло́нность орбиты, наклоне́ние) небесного тела — это угол между плоскостью его орбиты и плоскостью отсчёта (базовой плоскостью).
Обычно обозначается буквой i (от англ. inclination). Наклонение измеряется в угловых градусах, минутах и секундах. Если °, то движение небесного тела называется прямым [2]. Если ° °, то движение небесного тела называется обратным.
Зная наклонение двух орбит к одной плоскости отсчёта и долготы их восходящих узлов, можно вычислить угол между плоскостями этих двух орбит — их взаимное наклонение, по формуле косинуса угла. Аргумент перицентра Аргуме́нт перице́нтра — определяется как угол между направлениями из притягивающего центра на восходящий узел орбиты и на перицентр (ближайшую к притягивающему центру точку орбиты спутника), или угол между линией узлов и линией апсид. Отсчитывается из притягивающего центра в направлении движения спутника, обычно выбирается в пределах 0°-360°. Для определения восходящего и нисходящего узла выбирают некоторую (так называемую базовую) плоскость, содержащую притягивающий центр. В качестве базовой обычно используют плоскость эклиптики (движение планет, комет, астероидов вокруг Солнца), плоскость экватора планеты (движение спутников вокруг планеты) и т. д. При исследовании экзопланет и двойных звёзд в качестве базовой используют картинную плоскость — плоскость, проходящую через звезду и перпендикулярную лучу наблюдения звезды с Земли. Орбита экзопланеты, в общем случае случайным образом ориентированная относительно наблюдателя, пересекает эту плоскость в двух точках. Точка, где планета пересекает картинную плоскость, приближаясь к наблюдателю, считается восходящим узлом орбиты, а точка, где планета пересекает картинную плоскость, удаляясь от наблюдателя, считается нисходящим узлом. В этом случае аргумент перицентра отсчитывается из притягивающего центра против часовой стрелки.
Обозначается (). Долгота восходящего узла Долгота́ восходя́щего узла́ — один из основных элементов орбиты, используемый для математического описания ориентации плоскости орбиты относительно базовой плоскости. Определяет угол в базовой плоскости, образуемый между базовым направлением на нулевую точку и направлением на точку восходящего узла орбиты, в которой орбита пересекает базовую плоскость в направлении с юга на север. Для тел, обращающихся вокруг Солнца, базовая плоскость — эклиптика, а нулевая точка — Первая точка Овна (точка весеннего равноденствия); угол измеряется от направления на нулевую точку против часовой стрелки. Восходящий узел обозначается ☊, или Ω. Средняя аномалия Анимация, иллюстрирующая истинную аномалию, эксцентрическую аномалию, среднюю аномалию и решение уравнения Кеплера. Аномалии (рис.3) Средняя аномалия для тела, движущегося по невозмущённой орбите — произведение его среднего движения и интервала времени после прохождения перицентра. Таким образом, средняя аномалия есть угловое расстояние от перицентра гипотетического тела, движущегося с постоянной угловой скоростью, равной среднему движению. Обозначается буквой (от англ. mean anomaly) В звёздной динамике средняя аномалия вычисляется по следующим формулам: где: · — средняя аномалия на эпоху , · — начальная эпоха, · — эпоха, на которую производятся вычисления, и · — среднее движение. Либо через уравнение Кеплера: где:
Вычисление кеплеровых элементов Рассмотрим следующую задачу: пусть имеется невозмущённое движение и известны вектор положения и вектор скорости на момент времени . Найдём кеплеровы элементы орбиты.
Прежде всего, вычислим большую полуось: По интегралу энергии: (1) , где μ — гравитационный параметр, равный произведению гравитационной постоянной на массу небесного тела; для Земли μ = 3,986005·105 км³/c², для Солнца μ = 1,32712438·1011 км³/c². Следовательно, по формуле (1) находим . Примечания
См. также
Категории:
Воспользуйтесь поиском по сайту: ©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...
|