Глава 2. Распределение минералов по петрофизическим группам
Стр 1 из 2Следующая ⇒ Введение Петрофизика - одна из наук о Земле, изучающая физические свойства горных пород и руд с целью установления их состава структуры и термодинамического состояния при решении разнообразных задач геологии. Петрофизика играет роль фундаментальной науки по отношению ко всем частным направления геофизики: магниторазведке, гравиразведки, электроразведке, сейсморазведке и радиометрии, а также к методам гис. Современная петрофизика использует ряд современных методов исследования веществ, позволяющих с высокой точностью и воиспроизводимостью измерять большое количество разнообразных параметров горных пород. К ним относятся: плотность, различные виды пористости, магнитная восприимчивость, остаточная намагниченность, удельное электрическое сопротивление, диэлектрическая проницаемость, тепло - и температуропроводности, теплоемкость и т.д. Несомненное достоинство петрофизических методов исследований является возможность опосредственного изучения вещества Земли на любых глубинах с помощью каротажа и тонкие скрупулезные лабораторные измерения горных пород и руд на образцах. Глава 1. Повышенная магнитная восприимчивость парамагнитных амфиболов, пироксенов, биотитов связана с микропримесями ферромагнетиков. Предложите магнитные способы определения в этих минералах ферромагнетиков? Ответ: Парамагнетизм - это явление, возникающее в веществах с некомпенсированными магнитными моментами и отсутствием магнитного атомного порядка. Атомы или молекулы в этом случае можно представить в виде элементарных магнетиков. При отсутствии внешнего магнитного поля упорядоченному расположению этих магнетиков препятствует тепловое движение, энергия которого на порядок выше энергии взаимодействия между магнетиками. Поэтому при обычных температурах магнитные моменты разупорядочены и результирующая намагниченность равна нулю.
Внешнее магнитное поле ориентирует магнитные моменты атомов. Направление преимущественной ориентация совпадает с направлением намагничивающего поля, поэтому намагниченность и магнитная восприимчивость у парамагнетиков являются положительными величинами. Состояние, когда все элементарные магнитные моменты оказываются ориентированы параллельно внешнему магнитному полю, является предельным и может быть достигнуто лишь при очень низких температурах или в очень сильных полях. Соответствующая этому состоянию намагниченность насыщения J° зависит лишь от магнитных моментов атомов и ихколичества в единице объема. В обычных условиях ориентации магнитным полям магнитных моментов атомов препятствует их тепловое движение. Поэтомунамагниченность меньше намагниченности насыщения. К парамагнетикам относится большая группа минералов, втом числе породообразующих. Безжелезистые минералы (плагиоклазы, калиевые полевые шпаты, мусковит, скаполит, шпинель, топаз, апатит и др.) имеют относительно низкою магнитную восприимчивость не превышающую 10-0,00001 ед. Парамагнитная восприимчивость железосодержащих силикатов алюмосиликатов (биотиты, амфиболы, хлориты, пироксены, оливины) связана главным образом с содержанием в них ионов железа. В химически чистых разностях оно достигает 200,00001 ед. СИ. Более высокие значения магнитной восприимчивости этих минералов, образованных в естественных условиях, обусловлены микропримесями в них ферромагнетиков, в основном - магнетита (рис.4.4).
Как мы знаем даже не значительные примеси ферромагнетика (магнетита) заметно отклоняют магнитную стрелку компаса.
Для диагностики ферромагнитных минералов пользуются параметрами коэрцитивного спектра γ0 и Δm вычислены таким образом, чтобы они не зависели от концентрации ферромагнетика в породе.
γо = 103/Ji * c/d Δm = 103/Ji * (ΔJо/Δh) max
где Ji и Jо - индукционная и остаточная намагниченности; h - магнитное поле; с и d отрезки, поясняющие определение параметра по кривой коэрцитивного спектра (рис.4.13) В общем случае параметры коэрцитивного спектра зависят как от состава ферромагнетика, так и от его структурных особенностей. На диаграмме рис.4.14 приведены эталонные данные для основных разновидностей ферромагнитных минералов. Использовались породы с изометричными многодоменными включениями этих минералов. Структурные особенности могут повлиять на параметры коэрцитивного спектра, что затруднит идентификацию минералов по составу. Так, уменьшение зерна магнетита от 10 до 0,1 мкм увеличивает параметр Δm более чем в 2 раза, оставляя γо практически неизменным. Удлинение же зерна магнетита в два раза по сравнению с изометричиым зерном приводит к возрастанию обоих и параметров тоже почти в два раза. Вопрос 10,6: В чем может быть причина отличия по плотности пород Русской (Восточно-Европейской) и Западно-Сибирской платформ? Ответ:
Петрофизическая классификация геологических формации составлена Н.Б. Дортман. В ее основу положены значения двух физических параметров - намагниченности и плотности горных пород, входящих в состав геологической формации. О скоростях распространения упругих колебаний горных пород выделенных групп можно судить по корреляционным зависимостям между этим параметром и плотностью. Геологические формации распределены по пяти петрофизическим рис. №2. группам, различающимся как значениями физических параметров пород, так и условиями их образования. Формации литифицированных осадочных пород наиболее полно представлены и пределах Русской платформы и связаны с палеозойским этапом ее развития (см. рис.2). Плотность пород терригенных формаций здесь преимущественно 2,3-2,4 г/см3, карбонатных - 2,55-2,6 г/см3. Более древние (нижнепалеозойские) карбонатные формации Сибирской платформы имеют более высокие плотности - 2,65-2,85 г/см3. Наибольшими плотностями соответствующих литологических разностей пород отличаются геосинклинальные отложения складчатых систем (2,5 - 2,85 г/см3).
Намагниченность осадочных формаций слабая, в основном не выходящая за пределы (0-50) - 103 А/м. Наблюдается некоторая дифференциация отдельных разностей пород по вариациям предельных значений намагниченности. В целом намагниченность формаций слаболитифицированных пород изменяется в меньших пределах, чем намагниченность литифицированных пород, а вариации предельных значений намагниченности пород складчатых областей выше, чем платформ. Кислые и умеренно кислые интрузивные и эффузивные образования первой петрофизической группы характеризуются средней плотностью и слабой намагниченностью. В нее входят гранитовая и липаритовая формации, формация гранито-рапакиви, а также часть гранитоидных формаций. Этими образованиями сложены крупные баталитоподобные массивы в центральных частях антиклинорных зон, протяженные вулканогенные пояса. Наиболее широко эти группы интрузивных и эффузивных формаций развиты в палеозойских и мезозойских геосинклинально-складчатых системах. Петрофизические группы геологических формаций, отличающиеся особенностями петрофизической характеристики пород, слагают различные крупные геоструктуры земной платформы, геосинклинально складчатые пояса, щиты, что определяет петрофизическую обособленность этих геоструктур. Из рис.2 можно видеть, что платформы по петрофизическим особенностям отличаются от геосинклинально-складчатых поясов и кристаллических щитов, молодые платформы отличаются от древних, а Сибирская платформа имеет уникальную петрофизическую характеристику в связи с широким развитием в ней трапповой базит-долеритовой формации (IV петрофизическая группа). Складчатые системы и кристаллические щиты выделяются как в среднем более высокими значениями плотности и намагниченности, так и большим диапазоном изменения этих параметров в сравнении с платформами. Петрофизическая классификация геологических формаций, из-за большого разнообразия горных пород в каждой формации и перекрытия интервалов значений плотности и намагниченности носит ориентирующий характер. Однако в привязке к любому конкретному региону она становится значительно более определенной и существенно помогает решать разнообразные задачи геологического картирования.
Иными словами можно сказать, что плотность пород этих платформ, да впрочем как и других различается в том какими геологическими формациями пород и какими петрофизическими группами пород сложены платформы. Глава 2. Распределение минералов по петрофизическим группам
Ковалентная и металлическая типы кристаллохимических связей обеспечивают повышенную электропроводность. Самородные элементы составляют основу проводников, сульфиды и оксиды - полупроводников, галоиды, карбонаты, вольфраматы, силикаты и алюмосиликаты - диэлектриков. Глава 3
С увеличением глубины залегания осадочных горных пород в толще земной коры под действием возрастающего геостатического давления их плотность закономерно возрастает, главным образом за счет уменьшения пористости. Изменение пористости и плотности осадочных пород в процессе литогенеза происходит за счет двух факторов: физико-механического и геохимического. Первый обеспечивает уплотнение осадков и проявляется на этапе раннего диагенеза, второй служит причиной цементации и перекристаллизации пород на стадиях раннего и позднего катагенеза.
Одновозрастные осадочные образования одного типа, залегающие на разных глубинах, могут заметно отличаться по пористости и плотности. Максимальное уплотнение характерно для глинистых пород, которые представляют собой мелкодисперсные системы с пластичными связями, что обеспечивает их наиболее высокую пористость в начальном состоянии. Если в глинах присутствует песчаная фракция, минеральная плотность породы снижается, а жесткость внутренних связей увеличивается. Песчаники с жестким кварцевым и карбонатным цементом уплотняются существенно меньше, чем песчаники с глинистым цементом. Степень уплотнения карбонатных пород также в сильной степени зависит от степени глинистости: мергели по характеру уплотнения приближаются к пластичным геологическим образованиям, а известняки - к породам с жесткими связями. Количественно отмеченные закономерности характеризуются следующими цифрами: свежеотложенные глинистые осадки, известковые образования и рыхлые хорошо отсортированные пески имеют пористость соответственно 85-60, 60 и 45%, а пористость этих же отложении на глубину 3-4 км снижается до 30-20, 15-20 и 10-15% (см. рис.2.12). Плотность осадочных горных пород особенно быстро нарастает в интервалах верхних 500 метров. Помимо пористости на изменение плотности осадочных пород существенно влияет минеральный состав. Магнитная восприимчивость горных пород изменяется в очень широких пределах - от долей до десятков тысяч 105 ед. СИ, и зависит от соотношения в породе диа-, пара - и ферромагнитных минералов. Хотя в породе в общем случае присутствуют все три разновидности магнетиков, ее "магнитный облик" определяется преимущественно содержанием и свойствами ферромагнитных минералов, обладающих по сравнении с остальными аномальной магнитной восприимчивостью. Величина магнитной восприимчивости породы определяется тремя факторами: 1) типом ферромагнетика; 2) содержанием ферромагнетика в горной породе; 3) размерами включений ферромагнетика. Влияние типа ферромагнитного минерала на величину магнитной восприимчивости породы очевидно, так как эти минералы отличаются друг от друга по χ (см. табл.4.4). Наиболее магнитным является магнетит, наименее - слабые ферромагнетики: гематит, гётит и др. По убыванию магнитной восприимчивости ферромагнитные минералы составляют следующий ряд: магнетит - титаномагнетит - пирротин - гематит - гётит, гидрогетит, гидрогематит. В этом ряду несколько неопределенным является лишь положение титаномагнетита: при высоком содержании в нем титановой молекулы он может стоять за пирротином.
Величина магнитной восприимчивости породы может служить приближенным диагностическим признаком минерала - ферромагнетика, содержащегося в породе. Приближенным, поскольку влияют и другие факторы, в первую очередь - содержание ферромагнетика. Покажем это на примере рис.4.27, где приведен определенный график магнитной восприимчивости сланцевых пород в геологическом разрезе месторождения золота. По минералогическим определениям эталонных коллекций образцов в породах месторождения может присутствовать магнетит и пирротин. Породы средней части разреза скважины (рис.4.27) практически не содержат ферромагнетиков, поскольку их χ<20-10~6 ед. СИ. Вопрос о природе повышенной магнитности сланцев верхней и нижней частей разреза может быть решен на основании следующих соображений. Повышенная магнитность χ порядка (500 - 1000) - 105 ед. у углеродистых сланцев потому что они содержат микроскопически видимый пирротин. В существенно более магнитных карбонатно-слюдисто-кварцевых сланцах нижней части разреза невооруженным глазом ферромагнетик не обнаруживается, следовательно, такого уровня магнитную восприимчивость способен создать более сильный, чем пирротин, ферромагнетик, в нашем случае магнетит. Вопрос о присутствии в названных породах в небольших количествах второго ферромагнетика на основании только величин χ не может быть решен; речь может идти только о ферромагнетике, создающем основную долю величины χ. В частном случае рассматриваемого разреза присутствие в углеродистых сланцах магнетита практически может быть исключено на основании несовместимости в большом интервале термодинамических условий устойчивости магнетита и графита (рис.4.28); последний присутствует в углеродистых сланцах разреза. Аналогично вопрос о природе ферромагнетика решился на основании терморазмагничивания: интервал блокирующих температур в случае углеродистых сланцев находился в окрестности точки Кюри пирротина-320°С, а в случае карбонатно-слюдисто-кварцевых сланцев - точки Кюри магнетита, т.е.578°С.
Воспользуйтесь поиском по сайту: ©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...
|