Химический состав золы ячменя
Стр 1 из 2Следующая ⇒ Курсовой проект По дисциплине "Технологическое оборудование отрасли" на тему "Расчет и проектирование фильтр-пресса для тонкой очистки воды" Содержание
Введение. Проблемы воды и общий фон развития мембранных технологий [1] 1. Химический состав воды [2] 1.1 Химический состав золы ячменя 2. Технологическая сущность фильтрования воды [3] 3. Описание работы фильтр-пресса [4] 4. Расчет фильтр-пресса 5. Сравнительный анализ фильтров для очистки воды [5] 5.1 Патронные фильтры 5.2 Дисковые фильтры типа ФД 5.3 Вакуум-фильтры Заключение Список литературы
С каждым годом растет потребность людей в воде, пригодной для использования, и в то же время естественные воды непрерывно загрязняются деятельностью человека. "Сейчас более 1,2 млрд. людей не имеют обработанной питьевой воды и более 3 млрд. людей не имеют соответствующей обработки сточных вод и это при ежегодном 80 млн. росте населения". Индустриальная деятельность человека сопровождается непрерывным сбросом многообразных по своему химическому составу сточных вод, которые, попадая в источники питьевой воды, создают серьезную угрозу здоровью людей. "Болезни, вызванные некачественной водой, - это растущая трагедия человечества. Из-за плохой воды в мире ежегодно умирает более 5 млн. человек - это в 10 раз больше, чем погибает в войнах". В такой ситуации международные организации и правительства многих стран вынуждены усиливать требования к качеству сточных вод и осуществлять строгий контроль качества питьевой воды, что приводит к удорожанию стоимости питьевой воды для населения и технической воды для промышленных предприятий.
Стремительно растущая потребность в воде и ограниченные ресурсы источников воды в виде рек, озер и подземных вод, с одной стороны, и удорожание подготовки питьевой и технической воды - с другой, приводят к необходимости создания и использования новых технологий обработки воды, которые позволяют быстро, эффективно и экономически выгодно очищать воды, а также получать питьевую и индустриальную воду из огромных запасов морской воды. В последние 10-15 лет широкое применение находят мембранные технологии обработки воды, которые при подготовке питьевой воды позволяют надежно очищать исходную воду от примесей, вызывающих болезни, при обработке сточных муниципальных вод получать воду, пригодную для использования в промышленных целях, а при обработке индустриальных сточных вод получать воду, пригодную для повторного использования. Кроме того, с помощью мембран можно достаточно эффективно удалить соли из морской воды (т.е. произвести обессоливание воды), что открывает огромные перспективы в получении питьевой и индустриальной воды практически из неисчерпаемого источника. Растущие потребности в воде обусловливают необходимость динамичного развития водного сектора мировой экономики. Прогнозируется общий объем инвестиций в водный сектор до 2010 г. около 800 млрд. долл. США. Предполагается, что объем продаж оборудования в мировой индустрии очистки воды возрастет с 23 млрд. долл. США в 2003 г. до 33 млрд. долл. США в 2010 г., при этом доля Европы составит 35%. Рост потребностей в мембранных материалах приведен в табл.1.
Таблица № 1. Рост потребностей в мембранных материалах
Следует отметить, что прирост потребности в применении мембран микрофильтрации/ультрафильтрации (МФ/УФ) в области очистки муниципальных и сточных вод оценивается в %. Если в 2001 г. в оборудовании фильтрации воды и сточных вод, оцениваемом в 30 млрд. долл. США, доля мембранного оборудования составляла 1%, то по прогнозу на 2010 г. доля мембранного оборудования будет около 22% от общей стоимости оборудования фильтрации, которое оценивается в 54 млрд. долл. США. На развитие и применение мембранных технологий в водном секторе влияют следующие факторы (стимулы): окружающая среда (рост населения, ограниченные источники воды, загрязнение воды); охрана здоровья; международные и европейские нормы и требования по обработке сырой воды и сточных вод; целевые программы ООН, Всемирного банка и Европейского банка реконструкции и развития; коммерциализация (приватизация водохозяйств. государственное стимулирование реализации проектов, интеграция компаний по обработке воды); конкуренция (завоевание рынка, стремление разработать стандарты в создании средств обработки воды, снижение цен); стандарты (унификация мембран, оборудования и комплектующих); развитие восточного (Восточная Европа, СНГ, Китай) и африканского рынков; реконструкция водохозяйств. К сдерживающим факторам развития мембранных технологий можно отнести: бюджетные ограничения; сложившуюся инфраструктуру и традиционную технологию работы; несоблюдение законов, норм и требований по обработке воды; слабый приток частных инвестиций в Восточной Европе и странах СНГ; бюрократизм и коррупцию; консерватизм менеджеров и проектировщиков. Специалистам, непосредственно трудящимся в пищевой отрасли, в своей работе приходится постоянно сталкиваться с проблемами качества исходной воды как для конечного продукта, так и для технологических нужд всего производства. Данные проблемы особенно актуальны там, где вода является основной частью производимого продукта, и от ее качества напрямую зависит место, которое займет продукт на рынке. Требования к качеству воды регламентируются в каждой отрасли индустрии напитков нормативными документами. На основании рекомендаций и требований данных нормативных документов и предполагаемых объемов производства можно предпринять комплекс мероприятий, который позволит добиться поставленных на производстве задач. Крупные предприятия, как правило, сами обладают технической и материальной возможностью правильно поставить задачи и успешно воплотить их в жизнь. Средние и мелкие производители в основной своей массе такой возможности не имеют. Однако, несмотря на кажущуюся разницу в потенциальных возможностях, любому предприятию необходимо обладать достоверной информацией о состоянии дел в данной области, о применяемых в настоящее время технологиях и оборудовании.
Основываясь на собственном опыте разработки, внедрения и эксплуатации промышленных систем водоподготовки, можно сказать, что фирма, проектирующая и производящая системы водоподготовки для обеспечения современных технологических требований для пищевых производств, должна быть инжиниринговой компанией, имеющей в своем арсенале: методы проектирования и расчета блоков и узлов; алгоритмы управления ими в составе системы водоподготовки; методы разработки правил эксплуатации систем водоподготовки с учетом конкретных условий работы предприятия. Вышеприведенные методы должны быть одинаково применимы при проектировании и производстве систем как большой производительности, так и малой. Компания, которая берет на себя ответственность за разработку систем водоподготовки для пищевой промышленности, и в первую очередь для производства напитков, должна соблюдать следующие принципы: система водоподготовки должна полностью обеспечивать очищенной водой все технологические нужды производства, соответствовать заданной производительности в течение срока службы; в системах водоподготовки необходимо применять только сертифицированные материалы, узлы и агрегаты только промышленного, в редких случаях коммерческого (но никак не бытового) дизайна; применяемые технологические процессы должны быть такими, чтобы сохранять после водоподготовки естественные (то есть природные) достоинства очищенной воды.
обработку воды с применением, например, химреагентов производить только в крайнем случае, если нет этому альтернативы; технологические линии водоподготовки (особенно те составные ее части, которые определяют стабильность работы сооружения) целесообразно максимально автоматизировать, особенно в тех случаях, когда необходимо уменьшить или исключить вмешательство оператора; конструкция линии водоподготовки должна предусматривать обязательный (а зачастую непрерывный) контроль основных параметров (на каждом блоке системы): перепада давления, расхода и выработки очищенной воды, времени эксплуатации, а также солесодержания, рН очищенной воды и некоторых других параметров, которые требует конкретный вид производства; система водоподготовки должна обеспечивать возможность регулировки микроэлементного состава очищенной воды; расходные материалы и ингредиенты, необходимые для проведения регламентных работ, должны быть выбраны под конкретные условия эксплуатации системы водоподготовки, а их составы должны быть понятны обслуживающему установку персоналу; сопроводительная техническая и эксплуатационная документация должна быть выполнена в соответствии с требованиями ГОСТа, содержать объем данных, достаточный для запуска систем водоподготовки в работу и последующей ее правильной эксплуатации; окончательный выбор состава линии водоподготовки и ее конструкции должен определяться на основе минимальной технологической необходимости и экономических возможностей заказчика. П этом зачастую целесообразно закладывать в конструкцию линий водоподготовки потенциальную возможность ее последующей модернизации (после запуска производства заказчиком и накоплен инвестиционного потенциала) с целью расширения технологических возможностей и соответственно повышения уровня качества вырабатываемой продукции Основываясь на вышеизложенной концепции, сотрудники инжинирингового центра разработали и внедрили, на действующие производства широкий модельный ряд установок, позволяющий привести качество исходной воды к требованиям потребителей: осветлительные и сорбционные установки - по 1 3697-002-48147451-2004, применяемые в тех случаях, когда вода отличается высокой мутностью, повышенным содержанием механических и органических взвесей, железа, марганца, и для устранения постороннего привкуса, запаха и цветности; ионообменные установки - по 1 3697-003-48147451 - 2004, предназначенные для снижения щелочности, умягчения, удаления нитратов, солей тяжелых металлов и т.п.; установки мембранного фильтрования - по ТУ 4859-00 48147451-2004, предназначенные как для снижения механических, взвешенных и коллоидных веществ, так и снижения минерализации, удаления солей жесткости, двухвалентных анионов, большинства солей, включений нитрато-фторидов и т.п.
1. Химический состав воды [2]
Известно, что солевой состав воды оказывает большое влияние на характер вырабатываемого пива, и для получения отдельных сортов следовало бы подбирать воду определенного состава. Так как обычно на пивоваренных заводах имеется один источник водоснабжения, то стараются при изготовлении разных сортов пива путем соответствующих мероприятий удалить нежелательные соли или даже ввести новые. Так как вода является средой, в которой протекают все технологические процессы, то соли воды не могут не оказывать влияния на протекание этих процессов, которые в основном являются биохимическими, требующими определенных условий внешней среды, необходимых для нормального поведения ферментов и жизнедеятельности дрожжей. В природных водах главным образом содержатся следующие электролиты: соли NaCl, CaCl2, CaSO4, MgSO4, Ca (HCO3) 2, CaCO3, Na3PO4 и т.п.; щелочи NaOH, Ca (OH) 2, KOH; кислоты HCl, H2SO4, H3PO4, H2CO3. Так как содержание электролитов небольшое, молекулы их находятся в воде в почти полностью диссоциированном на ионы состоянии. Всегда при диссоциации имеется равное количество катионов и анионов. Имеются сильные электролиты, которые полностью распадаются на ионы, и слабые, распадающиеся на ионы только частично. Катионы воды: H+, Ca+, Mg2+, Na+, К+, Fe2+ и Fe3+, Al3+, Mn2+, NH4, анионы: ОН-, HCO3-, SO42-, Сl-, SiO22-, NO3, NO2 - и др. Ионы H+ и ОН - всегда находятся в воде, но сами не влияют на изменение кислотности (рН). Ca+, Mg2+, HCO3 - имеются во всякой природной воде, причем Ca+ в более высокой концентрации, чем Mg2+. В различных концентрациях находятся Na+, Сl - и SO42-. К+ очень редко в высокой концентрации. Соли кремневой кислоты могут быть в двух состояниях - в виде ионов и в недиссоциированном состоянии; в последнем случае наличие кремниевой кислоты часто обусловливает помутнение воды. Железо в воде содержится обычно в виде солей двухвалентного железа (Fe2+) и главным образом в виде кислого углекислого железа [Fe (HCO3) 2] сопровождаясь иногда небольшими концентрациями солей алюминия и марганца. Определяемые количества (не следы) NH4 и NO2-, так же как соли фосфорной кислоты, встречаются в воде в случае сильного бактериального загрязнения. Это является показателем гниения органических азотистых веществ; аммиак сначала окисляется в азотистую кислоту (ее соли), а затем в азотную. Наличие солей азотной кислоты при отсутствии азотистой не является показателем бактериального загрязнения. Из газов в воде находятся углекислота, кислород, следы сероводорода (наличие H2S тоже указывает на процессы разложения органических веществ). Свободная CO2 обладает коррозионными свойствами. Солевой состав воды, изменяя кислотность затора и пивного сусла, влияет на биохимические процессы пивоварения и тем самым на качество готового продукта. По этой причине к качеству воды в пивоварении предъявляются более высокие требования, чем к хорошей питьевой воде. Для улучшения ее технологических качеств при производстве светлых сортов пива допускается применение пищевой молочной кислоты и поваренной соли, свободной от вредных примесей гипса. Все технологические процессы приготовления пива протекают в слабокислой среде, так как в щелочной среде создаются неблагоприятные условия для протекания ферментативных процессов при осахаривании. По этой причине щелочная вода, содержащая большое количество карбонатов и бикарбонатов, непригодна для пивоварения. Для этой цели необходима вода с небольшим содержанием сернокислых и хлористых солей. Повышенная концентрация этих солей ухудшает вкус пива; жесткость воды влияет также и на его цвет. Практикой установлено, что там, где для приготовления пива используется мягкая вода, получается светлое пиво с нежной хмелевой горечью и ароматом; применение жесткой воды дает темное пиво с более сильной и грубой хмелевой горечью. В связи с этим для производства светлых сортов пива - Жигулевского, Рижского, Московского, Ленинградского - употребляют воду мягкую или средней жесткости. Жесткая вода может быть пользована для получения светлых сортов пива только после ее предварительного умягчения или подкисления молочной кислотой во время затирания. Для производства темных сортов пива - Украинского, Мартовского, Ленинградского темного, Бархатного - может быть использована и жесткая - вода без какой-либо обработки, так как темный солод имеет большую кислотность и содержит большое количество фосфатов и аминокислот, обладающих хорошим буферным действием и вполне компенсирующих отрицательное действие карбонатов воды. Для замачивания солодовенного зерна в пивоварении наиболее пригодна вода с низким содержанием хлоридов и сульфатов. Хлориды кальция, магния и особенно натрия замедляют процесс прорастания; гипс, вступая в обменную реакцию с дубильными веществами зерна, понижает их растворимость. Кроме того, кальциевые соли образуют пленки в оболочке зерна и затрудняют процесс замачивания. Вместе с тем кальциевые соли, особенно карбонаты, способствуют выщелачиванию горьких веществ и улучшают вкус солода. Содержащиеся в воде соединения железа дают осадки, а с дубильными веществами зерна они образуют малорастворимые соединения бурого цвета. Специалисты Чехословакии считают, что состав воды, применяемой для замачивания ячменя, не оказывает существенного влияния на качество солода; поэтому для этой цели могут применяться воды с различным солесодержанием. Основным требованием к воде в данном случае является отсутствие механических примесей и запаха. Нельзя также применять для этой цели воду, содержащую большое количество органических примесей, соединений железа и марганца, а также микроорганизмов. Наличие в воде железа и марганца не допускается потому, что в замочных чанах, особенно с применением аэрации, на оболочках зерен осаждаются гидраты окислов этих металлов, вследствие чего цвет солода, выращенного из такого зерна, становится бурым. Влияние других солей, содержащихся в воде, на процесс замачивания и на качество солода изучено еще не достаточно, предполагают, что при не слишком высоком содержании соли не оказывают влиянии на физиологические процессы, протекающие при замочке и прорастании зерна. Это положение объясняют тем, что семенная оболочка ячменного зерна обладает свойством полупроницаемой перегородки, которая пропускает в эндосперм зерна только воду, а содержащиеся в ней соли она задерживает. Специалисты Чехословакии отдают предпочтение мягким водам, имеющим нейтральную или слегка кислую реакцию (pH от 6 до 7). При замачивании на таких водах солод получается светлой окраски, обладает чистым ароматом и дает пиво безупречного вкуса. Содержащийся в воде бикарбонат кальция осаждает дубильные вещества оболочек зерна; с горькими же веществами он образует растворимые соединения, благодаря чему облегчается и ускоряется их выщелачивание. Исходя из этого, для производства солода типа чешского применяют при замачивании мягкую воду, а для солода типа баварского - воду с невысоким содержанием бикарбонатов. Вода, применяемая в процессе варки пивного сусла, является основной составной частью готового пива; от ее свойств в значительной степени зависит и качество пива. Для производства светлого Пльзеньского пива должна применяться мягкая вода с незначительной щелочностью, бедная гипсом. Такая вода особенно пригодна для производства пива с сильной, ярко - выраженной хмелевой горечью и острым вкусом. Для производства темного, слабо сброженного сладковатого пива типа мюнхенского пригодна вода средней жесткости (5-5,5 ммоль/дм3) с преимущественным содержанием бикарбонатов кальция и магния и умеренным содержанием гипса. На очень жесткой (15 ммоль/дм3) дортмундской воде с преобладающей так называемой некарбонатной жесткостью приготовляют светлое пиво с высоким содержанием алкоголя, средней горечью и высокой степенью сбраживания. Венская вода с высокой жесткостью, но с преобладанием бикарбонатов кальция и магния применяется для получения умеренно хмельного пива средней цветности. Свойства - воды являются лишь одним из факторов, определяющих качество пива; важное значение имеют также состав исходного сырья и особенности технологического процесса производства. Представляют интерес данные о расходе воды на пивоваренных заводах Чехословакии. Значительное количество воды расходуется в так называемых лагерных цехах на мытье технологического оборудования, т.е. бродильных чанов лагерных емкостей, бочек, разливочных машин, смесителей, трубопроводов, шлангов и мелкого инвентаря, а также на мытье фильтрационных салфеток и фильтрационной массы. Много воды расходуется на охлаждение сусла в оросительных холодильниках. Моечная вода, остающаяся на стенках посуды, смешивается с суслом или с готовым продуктом; поэтому во избежание инфицирования и порчи продуктов она должна быть биологически чистой, обладать хорошим вкусом и не иметь запаха. Солевой состав моечной воды не имеет существенного значения. Из общего количества потребной воды та часть ее, которая используется в производстве и для питания паровых котлов подвергается очистке. Для очистки воды, используемой для производственных и энергетических нужд желательно применять одинаковые методы, чтобы иметь для этой цели одну общую водоподготовительную установку. В ряде случаев, однако, не исключена возможность и целесообразность применения двухфазной очистки воды. При этом первой фазе обработки, т.е. коагуляции, известкованию и фильтрованию, подвергается вся обрабатываемая вода, а второй фазе - более глубокому умягчению - подвергается лишь питательная вода паровых котлов. Например, применяют катионитовое доумягчение воды после известкования и фильтрования. Глубокоумягченная этим методом вода непригодна для технологии пивоварения. Поэтому на тех установках где всю воду подвергают катионированию, для варки сусла используют смесь умягченной воды с сырой в такой пропорции, чтобы получить конечную жесткость воды около 2 ммоль/дм3. Бикарбонатную щелочность нейтрализуют также кислотами. Однако органами Санитарного надзора запрещено использование для этих целей минеральных кислот; допускается нейтрализация только молочной кислотой. Воду, содержащую соду, можно "исправлять" также хлористым кальцием:
Na2CO3+CaCl2=CaCO3+2NaCl.
Образующаяся при этом поваренная соль не создает осложнений. Кондиции на воду, применяемую для пивоварения в США практически те же, что на воду, используемую предприятиях СССР и Чехословакии; при подготовке воды на некоторых установках США применяют электролитическое получение коагулятора. Известкованную воду пропускают, как обычно, через песчаные фильтры. Перед поступлением воды на эти фильтры к ней добавляют гидроокись алюминия, получаемую путем электролиза в специальной батарее. После обработки известью вода разделяется на два потока: основной поток поступает на песчаный фильтр, а часть направляется в батарею, где через воду пропускается электрический ток. При этом алюминиевый анод батареи образует тонкую суспензию гидроокиси алюминия, которая рециркулирует через батарею, поддерживаясь во взвешенном состоянии, для этого имеется специальный насос. На катоде батареи выделяется водород. Из рециркуляционной линии батареи особым насосом суспензия подается в основной поток воды, поступающей на фильтры, При этом на поверхности песка образуется пленка с высокой абсорбирующей способностью. Через определенные периоды работы фильтр промывается обычным способом обратным током воды. Применение электролитического коагулятора обеспечивает (по литературным данным) высокую степень осветления воды; при испытаниях таких установок было достигнуто удаление из воды до 93% взвешенных веществ. Расход электроэнергии - около 0,005 кВт-ч на 1 т воды; расход алюминия - около 1,1 г/т. Высказываются предположения, что при увеличении количества коагулятора можно достигнуть 100%-ного удаления из воды взвесей. Описанный метод предполагается использовать для осветления пивного сусла и сброженного пива. На пивоваренных предприятиях Канады для удаления из воды бактерий и органических веществ применяют хлорирование. Для освобождения воды от неприятного запаха, вкуса цвета ее фильтруют через активированный уголь. Железо и марганец удаляют аэрацией с последующим фильтрованием волы. Если в исходной воде мала концентрация сульфата кальция, то его вводят до содержания 4-5 ммоль/дм3. Щелочность воды не должна превышать, по нормам канадских пивоваров, 0,5 ммоль/дм3. Для снижения щелочности применяют известкование. В некоторых случаях признано экономически целесообразным полностью удалять из воды все соли, т.е. деионизировать ее, а затем добавлять в необходимом количестве требуемые вещества. Воду для мытья бутылок и бочек умягчают, так как жесткая вода оставляет на стенках сосудов во время их сушки и пастеризации белую пленку углекислого кальция. Основным сырьем для приготовления пива является ячменный солод (ячмень, проросший, а затем высушенный в специально создаваемых и регулируемых условиях). Содержание минеральных веществ в ячмене колеблется в пределах 2,4-3,3% и зависит от ряда факторов, среди которых особенно важное значение имеют химический состав почвы, ее кислотность и влажность. Главная часть золы состоит из калия, фосфатов и кремневой кислоты, остальные элементы находятся в значительно меньших количествах. По литературным данным, зола ячменя имеет следующий состав (в %): Таблица № 2
Химический состав золы ячменя
Отдельные ионы (70-90%) находятся в связанном состоянии с органическими соединениями. Фосфорная кислота входит в состав фитина, фосфатидов, нуклеиновых кислот и др.
Дезоксирибонуклеотид
Аммониевые фосфатиды представляют собой смесь аммониевых солей различных фосфатидных кислот, являющихся продуктами взаимодействия ортофосфорной кислоты с одним, двумя или тремя остатками ацетилглицеринов. Общая формула аммониевых фосфатидов представлена ниже.
Из органических соединений освобождение фосфорной кислоты происходит путем ферментативного гидролиза. Соединения фосфорной кислоты имеют большое значение в создании буферности сусла и пива, причем в зоне рН 7,07-5,67 действуют буферные системы, образованные неорганическими фосфатами, а в зоне рН 5,67-4,27-фосфорные соединения, входящие в состав фитина. Кремневая кислота находится главным образом в оболочке ячменя в связанном состоянии с крахмалом (амилозой). Кремниевая кислота построена из тетраэдрических структурных звеньев (в каждом таком звене атом кремния находится в центре тетраэдра, а по вершинам расположены атомы кислорода). Структурные звенья, объединяясь в цепи, образуют более устойчивые поликремниевые кислоты:
Состав такого соединения можно выразить формулой (H2SiO3) n Однако обычно кремниевую кислоту изображают формулой H2SiO3. H2SiO3-кислота очень слабая, в воде мало растворима. При нагревании легко распадается аналогично угольной кислоте:
H2SiO3-метакремниевая кислота; H4SiO4-ортокремниевая кислота; H2Si2O5-двуметакремниевая кислота. А.В. Андрющенко установила, что из микроэлементов в ячмене в значительном количестве (более 11 мг в 100 г) содержатся Fe, Zn, Сг, Са, Mn, Sn, Pb, Ni, Li, А1, Ag, Со, которые, несомненно, имеют большое значение в технологии пивоварения. Фосфаты являются не только основными составляющими минеральных веществ и их соединений; их присутствие в ячменном зерне играет существенную роль в образовании важнейших органических соединений (например, фитина, нуклеиновых кислот, ко-энзимов, белковых веществ и т.д.). Из этих соединений фосфаты высвобождаются при солодоращении и пивоварении.
Фосфат
2-Дезоксирибозо-5-дифосфат
Присутствие фосфатов играет большую роль во многих технологических процессах. Так, без фосфатов не может проходить спиртовое брожение, поскольку протекающие при этом процессы химически "завязаны" на фосфорную кислоту. Особо много силикатов находится в оболочке ячменного зерна, а также в крахмале. Они коллоидно-растворимы и обнаруживаются в каждом помутнении пива. Для приготовления пива имеют значения соли в качестве микроэлементов, например, соли цинка для брожения. Большинство солей попадает в пиво из ячменя. Среднее пиво (12% -ное) содержит около 1600 мг минеральных веществ и их окислов на литр. Из них около 400 мг поступает из воды, а около 1200 мг - из солода (причем все карбонаты поступают в пиво из воды). 2. Технологическая сущность фильтрования воды [3]
При движении воды через сетки, ткани, пористые материалы достигается извлечение из нее взвешенных веществ. Процесс осуществляется либо на поверхности, либо в глубине фильтрующего материала. Поверхностное фильтрование происходит при движении воды через объемные элементы из пористых материалов значительной толщины (патронные фильтры и фильтры из пористой керамики); сетчатые или тканевые перегородки (фильтрование под давлением или под вакуумом, микрофильтрование); жесткие проницаемые каркасы с предварительно нанесенным фильтрующим слоем (намывные фильтры трубчатой, рамной или барабанной конструкции). В зависимости от свойств применяемых фильтрующих основ и извлекаемых из воды примесей процесс фильтрования состоит из следующих трех явлений: отложения, фиксации и отрыва. Механизм отложения бывает двух видов: механическое задержание извлекаемых примесей и отложение взвешенных частиц в порах. При механическом процеживании из воды извлекаются все частицы, превышающие размеры пор фильтрующей основы или пор, формируемых задержанными частицами, которые сами образуют фильтрующий слой. При этом чем меньше размеры пор фильтрующей основы, тем более высоким будет достигаемый эффект. Фильтрование через пористую основу может сопровождаться отложениями задержанных примесей на ее поверхности или внутри ее. Отложение взвешенных веществ в порах фильтрующей основы происходит, если их размер меньше размера пор и траектория движения частиц приводит к их контакту с поверхностью поровых каналов. Этому способствуют: диффузия за счет броуновского движения; прямое столкновение; инерция частиц; прилипание за счет ван-дер-ваальсовых сил; осаждение под действием гравитационных сил; вращательное движение под действием гидродинамических сил. Фиксирование частиц примесей воды на поверхности и в порах фильтрующего материала обусловлено малыми скоростями движения жидкости, силами когезии и адсорбции. При извлечении из воды примесей воды фильтрованием происходит уменьшение порового пространства фильтрующего материала вследствие осаждения частиц. Это влечет за собой увеличение скорости потока и изменение его режима: от ламинарного к турбулентному. В этом случае задержанные частицы примесей будут частично отрываться и перемещаться потоком глубже в поры фильтрующего материала и даже выноситься с фильтратом. Выбор поверхностного или объемного фильтрования обусловлен требуемым качеством фильтрата, свойствами воды и ее загрязнений, а также экономическими соображениями. Тот или иной вид фильтрования сопряжен с определенными капитальными и эксплуатационными затратами, которые, в свою очередь, определяются предварительной обработкой воды, способами промывки аппаратов, степенью автоматизации процесса и способов контроля за ним. Поверхностное фильтрование может осуществляться на тонких сетчатых перегородках, на объемных пористых элементах из твердых материалов или на жестких каркасах с предварительно нанесенным фильтрующим слоем. Фильтрование через сетчатые перегородки осуществляют на открытых или напорных аппаратах (фильтрах). При этом различают три вида фильтрования: макрофильтрование, при котором извлекают из воды частицы крупностью более 150 мкм, микрофильтрование - извлекают частицы размером 1...150 мкм и ультра-фильтрование - извлекают частицы размером 0,004...0,4 мкм. Путем макрофильтрования (макропроцеживание) через металлические перфорированные пластины или металлическую проволочную сетку с размером отверстий более 0,3 мм (барабанные сетки) извлекают грубодисперсные примеси, плавающие примеси, насекомые, травы, водоросли, ветки и т.п., имеющие размеры от 0,2 до нескольких миллиметров. Макрофильтрование осуществляют на вращающихся макроситах и ситах с укрепленным скребком, работающих с низкими потерями напора, и на неподвижных или вращающихся самоочищающихся ситах и механических фильтрах, работающих под давлением. Вращающиеся макросита, применяемые в процессе подготовки питьевой воды и воды для орошения, представляют собой или горизонтально располагаемые барабаны, или вращающиеся сита из непрерывной сетки. Их подача варьируется от нескольких литров до кубических метров в секунду. Барабанные сетки (БС), размещаемые на водозаборе или площадке очистных сооружений, до подачи в воду реагентов используют для грубого процеживания воды. Размер ячеек сетки из нержавеющей стали или полимеров 0,5×0,5 мм. Рабочая сетка размещается между поддерживающими сетками с размером отверстий 10×10 мм. Интенсивность фильтрования на БС принимают 25...62 л/с на 1 м2 смоченной площади макросетки, так как барабан только на 2/3 диаметра погружен в воду. Расход воды на промывку барабанных сеток, подаваемой под давлением 0,2 МПа, составляет до 0,5% суточного расхода. Потери напора на макросетке составляют до 0,1 м. Схема работы аппарата следующая. Из бокового канала исходная вода через перфорированную часть соосно расположенного полого вала вводится внутрь вращающегося барабана, фильтруется через сетку и проникает в камеру, а далее через окна отводится в канал фильтрата. При засорении сетки и достижении максимального перепада уровней воды автоматически включается промывное устройство, которое промывает полосу сетки на верхней образующей барабана. Промывная вода собирается воронками и по глухой части полого вала отводится за пределы аппарата. Вращающееся сито представляет собой ряд чередующихся фильтровальных полотен, выполненный из плетеных металлических бронзовых или стальных прутьев диаметром 0,25…1 мм, смонтированных на жестком каркасе с размером ячеек 0,3...3 мм. Скважность сита составляет 50...60%. Скорость фильтрования по отношению к площади сита погруженной в воду, составляет 0,35...0,4 м/с. Предпочтительно фильтровать обрабатываемую воду изнутри наружу, что облегчает промывку сетки и удаление задержанных примесей. Потери напора 0,2...0,5 м. вод. ст. Для извлечения из воды крупных плавающих частиц рекомендуются сита в виде неподвижной стальной пластины с отверстиями 2...5 мм. Излеченные примеси удаляются скребком или щеткой, укрепленной на конце цепи (для прямого наклонного сита), или вращающимся устройством (для круглых сит); и сбрасываются в сборник. Плоские сита целесообразно располагать в подводящих каналах шириной до 2,5 м, потери напора до 0,5 м. вод. ст. Неподвижные или вращающиеся самоочищающиеся сита с размером отверстий 0,25...2 мм используют для извлечения из воды относительно крупных взвесей. Обычно неподвижные сита состоят из решетки, изготовленной из тонких прутьев, расположенных под переменным углом и смонтированных в жесткой раме. Прутья могут быть круглого, прямоугольного или треугольного сечения. Обрабатываемая вода подается в верхнюю часть сита, а осадок непрерывно удаляется с поверхност
Воспользуйтесь поиском по сайту: ©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...
|