изменению емкости в интервале температур
⇐ ПредыдущаяСтр 2 из 2
Таблица 2.4. Группы ТКЕ слюдяных конденсаторов
2.6. ДИЭЛЕКТРИЧЕСКАЯ АБСОРБЦИЯ КОНДЕНСАТОРОВ Явление, обусловленное замедленными процессами поляризации в диэлектрике, приводящее к появлению напряжения на электродах после кратковременной разрядки конденсатора, называется диэлектрической абсорбцией. Напряжение, появляющееся на обкладках конденсатора после его кратковременной разрядки, существенно зависит от длительности времени зарядки конденсатора, времени, в течение которого он был закорочен, и времени, прошедшего после этого. Количественное значение абсорбции принято характеризовать коэффициентом абсорбции (К a ), который определяется в стандартных условиях. Примерный график зависимости напряжения на конденсаторе от времени при измерении коэффициента абсорбции приведен на рис. 2.1. Численные значения коэффициента абсорбции для некоторых типов конденсаторов приведены в табл. 2.5. Таблица 2.5. Значения коэффициентов абсорбции
Рис. 2.1. Зависимость напряжения на конденсаторе от времени при измерении коэффициента абсорбции
Коэффициент абсорбции конденсаторов зависит от температуры окружающей среды и повышается с ее ростом. 2.7. ПОЛНОЕ СОПРОТИВЛЕНИЕ КОНДЕНСАТОРА, РЕЗОНАНСНАЯ ЧАСТОТА Под полным сопротивлением конденсатора понимают сопротивление конденсатора переменному синусоидальному току определенной частоты, обусловленное наличием- у реального конденсатора наряду с емкостью также активного сопротивления и индуктивности. Значения активного сопротивления и индуктивности зависят от характеристик используемых материалов и конструктивного исполнения конденсатора. Полное сопротивление конденсатора Zпри представлении его в качестве последовательно соединенных собственной емкости С, индуктивности секции и выводов L, активного сопротивления выво-
дов, контактного узла и сопротивления обкладок r, на частоте f определяется по формуле Самая низкая частота, при которой полное сопротивление конденсатора будет минимальным и чисто активным, называется резонансной частотой конденсатора. На частоте ниже резонансной полное сопротивление конденсатора носит емкостный характер, на частотах выше резонансной — индуктивный (рис. 2.2). Ориентировочные значения резонансных частот и собственных индуктивностей различных типов конденсаторов представлены в табл. 2.6.
При анализе возможности эксплуатации конденсатора в различных электрических цепях часто пользуются понятием эквивалентное последовательное сопротивление (ЭПС), понимая под ним активную составляющую полного сопротивления. Таблица 2.6. Значения индуктивности и резонансных частот конденсаторов
2.8. РЕАКТИВНАЯ МОЩНОСТЬ
Произведение напряжения U определенной частоты f, приложенного к конденсатору, на силу тока I, проходящего через него, и на синус угла сдвига фаз ср между ними определяет значение реактивной мощности конденсатора. В большинстве случаев угол сдвига фаз близок к 90°, поэтому sin ю= 1 и Pp=2pifCU2. Понятие реактивной мощности введено для высокочастотных и особенно высоковольтных конденсаторов и используется при установлении допустимых электрических режимов эксплуатации. При этом в области низких частот ограничения определяются допустимой амплитудой напряжения переменного тока, а на высоких частотах— допустимой реактивной мощностью конденсатора. Таким образом, реактивная мощность характеризует нагрузочную способность конденсатора при наличии на нем больших напряжений высокой частоты. При умножении реактивной мощности на коэффициент tg б/(l+tg2б) получим активную мощность, обусловленную наличием потерь в конденсаторе и вызывающую его нагрев. 2.9. ВНОСИМОЕ ЗАТУХАНИЕ И СОПРОТИВЛЕНИЕ СВЯЗИ Вносимое затухание и сопротивление связи — это величины, характеризующие способность помехоподавляющих конденсаторов и фильтров подавлять помехи переменного тока заданной частоты. Вносимое затухание (A) пропорционально логарифму отношения напряжений, измеренных на нагрузке электрической цепи до (U 1) и после (U2) включения конденсатора или фильтра в эту цепь: A =20lg(U 1/ U 2). Сопротивление связи (R cв ) определяется как отношение напряжения на выходе помехоподавляющего конденсатора (U вых) к его входному току (I вх). Понятие сопротивления связи введено для трех- и чстырсхвыводиых конденсаторов: Rсв = U ВЫх/Iвх Вносимое затухание и сопротивление связи зависят от частоты переменного тока, емкости, индуктивности, добротности и конструкции конденсаторов и фильтров, а также от выходного сопротивления генератора и сопротивления нагрузки. 2,10. СПЕЦИФИЧЕСКИЕ ЭЛЕКТРИЧЕСКИЕ ПАРАМЕТРЫ И ХАРАКТЕРИСТИКИ ПОДСТРОЕЧНЫХ И ВАКУУМНЫХ КОНДЕНСАТОРОВ Подстроечные и переменные конденсаторы наряду с основными параметрами, приведенными выше, имеют дополнительные, учитывающие особенности их функционального назначения и конструктивное исполнение.
Вместо параметра номинальная емкость используются параметры максимальная и минимальная емкости. Это максимальное и Минимальное значение емкости конденсатора, которое может быт получено перемещением его подвижной системы. Специфичными параметрами подстроечиых и переменных конденсаторов являются момент вращения, скорость перестройки емкости и износоустойчивость. Момент вращения — минимальный момент, необходимый для непрерывного перемещения подвижной системы конденсатора. Скорость перестройки емкости влияет на надежность и прочность конденсатора. В нормативной документации ограничивается скорость перестройки емкости для керамических конденсаторов — не более 10—15 циклов в минуту для вакуумных 5—30. Под циклом перестройки емкости понимается перестройка емкости от минимальной до максимальной и обратно. Количество допустимых циклов перестройки емкости определяет износоустойчивость конденсатора. Под износоустойчивостью понимают способность конденсатора сохранять свои параметры (противостоять изнашиванию) при многократных вращениях подвижной системы. Износоустойчивость конденсаторов и скорость перестройки емкости зависят от конструкции конденсаторов, свойств примененных материалов и технологии их изготовления. Для вакуумных конденсаторов наиболее важным параметром является электрическая прочность. Этот термин не следует отождествлять с определением электрической прочности диэлектрика, принятым в теории диэлектриков. Для конденсаторов термин электрическая прочность следует понимать условно, как способность конденсаторов выдерживать определенное время (обычно небольшое, ^до нескольких минут) приложенное к нему напряжение выше номинального без изменения его эксплуатационных характеристик и пробоя диэлектрика. Раздел третий ПРИМЕНЕНИЕ И ЭКСПЛУАТАЦИЯ КОНДЕНСАТОРОВ
3.1. эксплуатационные факторы и их воздействие НА КОНДЕНСАТОРЫ Эксплуатационная надежность конденсаторов в аппаратуре во многом определяется (воздействием комплекса факторов, которые по своей природе можно разделить на следующие группы: электрические нагрузки (напряжение, ток, реактивная мощность, частота переменного тока); климатические нагрузки (температура и влажность окружающей среды, атмосферное давление, биологические факторы и т. д.); механические нагрузки (вибрация, удары, постоянно действующее ускорение, акустические шумы); радиационные воздействия (поток нейтронов, гамма-лучи, солнечная радиация и др.). Под воздействием указанных факторов происходит изменение параметров конденсаторов. В зависимости от вида и длительности нагрузки уходы параметров складываются из обратимого (временного) и необратимого изменений. Обратимые изменения параметров вызываются кратковременным воздействием нагрузок, не приводящих к изменению свойств конструкционных материалов и проявляющихся лишь в условиях воздействия нагрузок. После снятия нагрузки параметры конденсаторов принимают значения, близкие к начальным. Климатические нагрузки. Температура и влажность окружающей среды являются важнейшими факторами, влияющими на надежность, долговечность и сохраняемость конденсаторов. Длительное воздействие повышенной температуры вызывает старение диэлектрика, в результате чего параметры конденсаторов претерпевают необ-
ратимые изменения. Предельно допустимая температура для конденсаторов ограничивается заданием максимальной положительной температуры окружающей среды и величиной электрической нагрузки. Применение конденсаторов в условиях, превышающих эти ограничения, недопустимо, так как может вызвать резкое ухудшение параметров (снижение сопротивления изоляции и электрической прочности, уменьшение емкости, увеличение тока и тангенса угла потерь), нарушение герметичности спаев, ухудшение изоляционных и защитных свойств органических покрытий и заливочных материалов, а в ряде случаев может привести к полной потере работоспособности конденсаторов. Наряду с внешней температурой на конденсаторы в составе аппаратуры может дополнительно воздействовать теплота, выделяемая другими сильно нагревающимися при работе аппаратуры изделиями (мощные генераторные и модуляторные лампы, резисторы и т. п.). Тепловое воздействие на конденсаторы может быть как непрерывным, так и периодически изменяющимся. Резкое изменение температуры может вызвать механические напряжения в разнородных материалах, нарушение герметичности паяных соединений, появление трещин, зазоров в деталях конденсаторов.
Для многих типов конденсаторов в условиях низких температур характерно снижение емкости, особенно у оксидных и керамических конденсаторов типа 2 (рис. 3.1, 3.2). У оксидных конденсаторов при низких температурах увеличивается тангенс угла потерь (рис. 3.3). Все типы оксидных конденсаторов с жидким или пастообразным электролитом при температурах ниже 60° С практически неработоспособны из-за резкого снижения емкости и увеличения тангенса угла потерь. При эксплуатации конденсаторов в условиях сверхнизких температур (до минус 180° С) за счет повышения хрупкости ряда конструкционных материалов возможно ухудшение механической прочности конденсаторов. С ростом температуры окружающей среды напряжение на конденсаторе должно снижаться. Типичная зависимость номинального напряжения от температуры приведена на рис. 3.4. В условиях повышенной влажности на электрические характеристики конденсаторов влияет как пленка воды, образующаяся на поверхности (процесс адсорбции), так и внутреннее поглощение влаги диэлектриком (процесс сорбции). Для герметизированных конденсаторов характерны только адсорбционные процессы. У конденсаторов, не имеющих вакуумноплотной герметизации, возможно также внутреннее проникновение влаги. Длительное воздействие повышенной.влажности наиболее сильно сказывается на изменении параметров негерметизированных конденсаторов. Наименьшую влагостойкость имеют негерметизированные бумажные и металлобумажные, а также слюдяные спрессованные конденсаторы. Проникновение влаги внутрь конденсаторов снижает сопротивление изоляции (особенно при повышенных температурах) и электрическую прочность, увеличивает тангенс угла потерь и емкость. Особенно опасно для негерметизированных конденсаторов одновременное длительное воздействие повышенной влажности и электрической нагрузки. При этом у керамических конденсаторов с открытым междуэлектродным зазором возможно снижение сопротивления изоляции или электрический пробой за счет миграции ионов металла обкладок (особенно серебра) по торцу конденсатора,
а у металлобумажных конденсаторов разрушение обкладок за счет процессов электролиза. После пребывания конденсаторов в нормальных климатических условиях (особенно после подсушки) адсорбированная влага удаляется и герметизированные конденсаторы практически полностью восстанавливают свои параметры. Кроме непосредственного влияния на электрические характеристики конденсаторов влага вызывает коррозию металлических деталей и контактной арматуры конденсаторов, облегчает условия развития различных плесневых грибков. Появление плесени может вызвать обесцвечивание и разрушение защитных покрытий и маркировки, ухудшение изоляционных свойств органических материалов, способствует образованию слоя влаги на конденсаторах. В морских районах вредное влияние влаги усиливается за счет присутствия в атмосфере солей, входящих в состав морской воды, что увеличивает электропроводность увлажненных поверхностей, изоляционных материалов, облегчает условия электролиза и коррозии металлов. В промышленных районах конденсируемая на поверхности конденсаторов влага может содержать растворы сернистых и других агрессивных соединений, усиливающих вредное действие влаги. При снижении внешней температуры внутри блоков аппаратуры могут создаваться условия, благоприятные для образования инея и выпадения росы. Воздействие инея и росы практически не сказывается на работоспособности низковольтных конденсаторов. Однако наличие влаги на поверхности конденсаторов при выпадении росы может увеличить поверхностную проводимость и привести к снижению сопротивления изоляции, а у высоковольтных конденсаторов — к снижению электрической прочности. После испарения росы электрические характеристики конденсаторов восстанавливаются. Время восстановления зависит от габаритов, конструкции, теплоемкости и других характеристик изделия. Полностью сохраняют работоспособность при воздействии инея и росы конденсаторы с оксидным диэлектриком. Конденсаторы не подвергаются непосредственному воздействию солнечной радиации, атмосферных осадков, песка и пыли. Однако пыль и песок способствуют коррозии металлических деталей и развитию плесени, а попадая в зазоры между трущимися частями под-строечных конденсаторов, ускоряют их износ. Повышенное (до 3 атм) давление не оказывает существенного влияния на работу конденсаторов. В условиях низкого давления снижается электрическая прочность воздушного промежутка и создаются условия для пробоев и перекрытия рис. 3.5. Для избежания пробоев и перекрытия при пониженном атмосферном давлении необходимо снижать напряжение на конденсаторе. Кроме того, при пониженном атмосферном давлении ухудшается отвод теплоты от конденсатора, а в условиях глубокого вакуума (давление менее 1,3х10-6 Па) возможна сублимация (испарение) твердых материалов. В условиях низкого давления у негерметичных оксидных конденсаторов с жидким или пастообразным электролитом за счет испарения легко летучих компонентов происходит интенсивная потеря электролита, что резко снижает срок их службы. Ухудшение механической прочности и «эластичности органических материалов узла уплотнения за счет сублимации увеличивает скорость потери электролита. В связи с тем что в нормативной документации на конденсаторы могут встретиться значения давления в разных единицах изме- рения, Ниже приведены соотношения наиболее часто встречающихся значений давления (табл. 3.1). Таблица 3.1. Соотношение различных значений давления
Примечание. 1 Па = 1 Н/м2=0,0075 мм рт ст; 1 техническая атмосфера = 1 кгс/см2=98066,5 Н/м2=0,981 бар=0,968 физической атмосферы, 1 бар—103 Н/м2=106 дни/см2; 3 кгс/см2=294 200 Па = 2942 гП Механические нагрузки. При эксплуатации и транспортировании аппаратуры конденсаторы подвергаются воздействию различного вида механических нагрузок: вибрации, одиночным и многократным ударам, линейному ускорению, акустическим нагрузкам. Наиболее опасными являются вибрационные и ударные лагрузки. Воздействие механических нагрузок, превышающих допустимые нормы, может вызвать обрывы выводов и внутренних соединений, увеличение тока утечки у оксидных конденсаторов, появление трещин в керамических корпусах и изоляторах, снижение электрической прочности, изменение установленной емкости у подстроечныч конденсаторов. Высокие уровни разрушающих усилий могут возникать при воздействии ударных нагрузок, если составляющие спектра ударного импульса совпадают с собственными резонансными частотами конденсатора. Воздействие механических нагрузок на вакуумные конденсаторы может вызвать изменение емкости, синхронное с частотой вибрации
и моментом воздействия ударных нагрузок. У оксидных конденсаторов (особенно у танталовых с жидким электролитом) во время воздействия вибрационных и ударных нагрузок возможны кратковременные броски тока утечки из-за локальных разрушений оксидного слоя. Радиационные воздействия. Развитие атомной энергетики и освоение космоса выдвигает требование по устойчивости комплектующих элементов (в том числе конденсаторов) к воздействию ионизирующих излучений, глубокого вакуума и сверхнизких температур. Воздействие ионизирующих излучений может как непосредственно вызвать изменение электрических и эксплуатационных характеристик конденсаторов, так и способствовать ускоренному старению конструкционных материалов при последующем воздействии других факторов. Характер и скорость изменения параметров зависят от дозы, интенсивности и энергетического спектра излучения и в значительной мере определяются видом рабочего диэлектрика и конструкцией конденсатора. Процессы, протекающие в конденсаторах в условиях воздействия ионизирующих излучений, коренным образом отличаются от процессов старения в обычных условиях эксплуатации. В результате воздействия ионизирующих излучений в конденсаторах также могуг возникать явления, приводящие к обратимым или остаточным изменениям их электрических параметров. Обратимые изменения связаны с процессами ионизации диэлектрических материалов и воздуха и сопровождаются в основном резким снижением сопротивления изоляции и увеличением тока утечки вследствие образования поверхностных и внутренних объемно-распределенных зарядов. Увеличивается также тангенс угла потерь, особенно на низких частотах. После прекращения облучения сопротивление изоляции (ток утечки оксидных конденсаторов) в большинстве случаев восстанавливается. Время восстановления зависит от типа диэлектрика, дозы и мощности излучения. Остаточные изменения параметров связаны в основном с устойчивыми нарушениями структуры рабочего диэлектрика, а также защитных и заливочных материалов. При воздействии ионизирующих излучений наиболее сильно изменяются структура и механические свойства полимерных материалов, применяемых в пленочных и комбинированных конденсаторах. Структурные изменения сопровождаются, как правило, интенсивным газовыделением. Сравнительно быстрым изменениям подвергаются пропитывающие составы и целлюлоза, являющаяся основным компонентом конденсаторной бумаги. Поэтому конденсаторы с органическим диэлектриком более чувствительны к воздействиям излучения, чем конденсаторы с неорганическим диэлектриком. Наиболее устойчивы к воздействию ионизирующих излучений керамические конденсаторы типа 1. Радиационные нарушения структуры материалов могут приводить и к ухудшению основных эксплуатационных характеристик конденсаторов — срока службы, механической и электрической прочности, влагостойкости. Электрические нагрузки. Наибольшие необратимые изменения параметров вызываются длительным воздействием электрической нагрузки, при которой происходят процессы старения, ухудшающие электрическую прочность. Это необходимо учитывать, выбирая значение рабочего напряжения, особенно при длительной эксплуатации конденсаторов.
При постоянном напряжении основной причиной старения являются электрохимические процессы, возникающие в диэлектрике под действием постоянного поля и усиливающиеся с повышением температуры и влажности окружающей среды. Степень их влияния на параметры конденсаторов определяется видом диэлектрика и конструктивным исполнением конденсатора. При этом суммарное изменение параметров конденсаторов не превышает значений, гарантируемых на период минимальной наработки, приведенных в справочных данных. При переменном напряжении и импульсных режимах основной причиной старения являются ионизационные процессы, возникающие внутри диэлектрика или у краев обкладок, преимущественно в местах газовых включений. Данное явление характерно в основном для высоковольтных конденсаторов. Ионизация разрушает органические диэлектрики в результате бомбардировки их возникающими ионами и электронами, а также за счет агрессивного действия на диэлектрик образовавшихся озона и окислов азота. Для керамических материалов ионизация в закрытой поре вызывает сильный местный разогрев, в результате которого появляются механические напряжения, сопровождающиеся растрескиванием керамики и пробоем по трещине. Несмотря на то что допускаемое значение напряженности электрического поля в диэлектрике конденсатора при его испытаниях выбирается с некоторым запасом, эксплуатация под электрической нагрузкой, превышающей номинальное напряжение, резко снижает надежность конденсаторов. Превышение допустимой переменной составляющей напряжения может вызвать нарушения теплового равновесия в конденсаторе, приводящего к термическому разрушению диэлектрика. Разви тие этого явления обусловлено тем, что активная проводимость диэлектрика возрастет с повышением температуры. Наиболее устойчивы к воздействию электрических эксплуатационных нагрузок и стабильны защищенные керамические конденсаторы типа 1. Среди оксидных конденсаторов наиболее стабильны оксидно-полупроводниковые герметизированные конденсаторы. Низкая стабильность электролитических оксидных конденсаторов объясняется наличием в них жидкого или пастообразного электролита, сопротивление которого в большей степени зависит от температуры окружающей среды, чем у оксидно-полупроводниковых конденсаторов. Длительное воздействие электрической нагрузки, особенно при повышенных температурах, вызывает испарение летучих фракций электролита, что еще больше повышает сопротивление электролита и резко ухудшает температурную и частотную зависимости емкости и тангенса угла потерь. Наиболее интенсивно этот процесс протекает у алюминиевых конденсаторов малых габаритов с электролитом на основе диметилформамида. При длительной эксплуатации под электрической нагрузкой некоторых типов танталовых электролитических конденсаторов возможно снижение емкости за счет пассивации катода, а также возникновение отказов, связанных с разрушением серебряного корпуса и вытеканием вследствие этого электролита. Повышение амплитуды переменной составляющей напряжения ускоряет этот процесс. Новые типы конденсаторов с танталовым корпусом лишены этого недостатка и имеют повышенную стабильность параметров и более высокую долговечность,
3.2. ЧАСТОТНЫЕ СВОЙСТВА КОНДЕНСАТОРОВ И ОСОБЕННОСТИ ИХ РАБОТЫ В ИМПУЛЬСНЫХ РЕЖИМАХ При выборе конденсаторов для работы в цепях переменного или пульсирующего тока необходимо учитывать их частотные свойства, определяемые рядом конструктивных факторов: типом диэлектрика, значениями индуктивности и эквивалентного последовательного сопротивления, конструкцией и др, Работоспособность конденсаторов при переменном напряжении ограничивают в основном следующие факторы: тепловыделение, пропорциональное средней мощности, которое может резко возрастать при превышении допустимых режимов эксплуатации и создавать условия для теплового пробоя конденсатора; напряженность электрического поля, воздействующего на диэлектрик конденсатора и вызывающего его электрическое старение; ток, протекающий через конденсатор, при большой плотности которого возможны локальный перегрев и разрушение контактных узлов, выгорание металлизированных обкладок и т. п.; температура окружающей среды. Наиболее высокими частотными свойствами обладают керамические конденсаторы типа 1, слюдяные и конденсаторы из неполярных пленок (полистирольные, полипропиленовые и др.). Ориентировочные диапазоны рабочих частот для различных групп конденсаторов приведены на рис. 3.6. Ркс 3 б Ориентировочные диапазоны рабочих частот для различных^ групп конденсаторов В связи с тем что с повышением частоты растут потери энер-гии в конденсаторе, для сохранения теплового баланса в конденсаторе и исключения возможности возникновения пробоя с повышением частоты необходимо снижать амплитуду переменной составляющей. Характерная зависимость допустимой амплитуды переменной составляющей напряжения на конденсаторе от частоты приведена
на рис. 3.7. У керамических и слюдяных конденсаторов допустимая величина переменной составляющей напряжения определяется исходя из допустимой реактивной мощности. У ряда групп конденсаторов с повышением частоты может заметно снижаться эффективная емкость. Уменьшение емкости с ростом частоты происходит как за счет снижения диэлектрической про- Рис. 3.7. Характер зависимости допустимой переменной составляющей напряжения от частоты ницаемости диэлектрика, так и за счет увеличения эквивалентного последовательного сопротивления (ЭПС). Влияние ЭПС на значе-нле эффективной емкости определяется зависимостью
ЭПС обусловлено потерями в конденсаторе — в диэлектрике, в металлических частях, в переходных контактных сопротивлениях, в электролите (у оксидных конденсаторов). В обычных конденсаторах ЭПС достаточно мало (доли ома) и снижение емкости с частотой можно заметить лишь в области высоких частот. Наиболее сильная зависимость емкости от частоты имеет место у оксидных конденсаторов (особенно с жидким электролитом) из-за большого удельного сопротивления электролита и его зависимости от частоты. Для этих конденсаторов снижение емкости с частотой наблюдается, начиная с сотен герц. Характер зависимости емкости от частоты, обусловленный наличием ЭПС, показан на рис. 3.8.
В импульсных режимах могут быть использованы конденсаторы, специально сконструированные для этих целей и общего применения. Однако в любом случае при выборе конденсаторов должны быть учтены особенности их работы при импульсных нагрузках. Учет особенностей должен производиться с двух сторон: способен ли конденсатор данного типа обеспечить формирование или передачу импульса; не является ли такой режим разрушающим для конденсатора.
При оценке возможности работы конденсаторов в импульсном режиме необходимо учитывать, что при малых длительностях формируемых импульсов даже малая собственная индуктивность конденсатора представляет большое индуктивное сопротивление, что сказывается на форме импульса. Значения индуктивностей некоторых типов конденсаторов приведены в табл. 3.2. Таблица 3.2. Значения индуктивностей конденсаторов
Существенное влияние на форму импульса, а также на коэффициент полезного действия устройства, в котором установлен конденсатор, могут оказывать потери энергии в диэлектрике и арматуре конденсатора. Поэтому при выборе конденсаторов для импульсных режимов следует учитывать их температурно-частотные зависимости емкости, тангенса угла потерь и полного сопротивления. Для решения вопроса о том, не является ли данный импульсный режим разрушающим для конденсаторов, необходимо учитывать явления, связанные с нагревом конденсатора за счет импульсных токов, с ионизационным старением диэлектриков и пр. Указанные явления могут привести к нарушению электрической прочности конденсатора и выходу его из строя. Поэтому допустимая импульсная нагрузка на •конденсаторе определяется исходя из следующих параметров импульсного режима: значений положительных и отрицательных пиков напряжения и тока, размаха переменного напряжения на конденсаторе, длительности нарастания и спада напряжения, периода и частоты следования импульсов, наличия постоянной составляющей. Выбор конкретных допустимых импульсных нагрузок конденсаторов производится по номограммам, приведенным в нормативной доь) ментации, исходя из параметров импульсного режима. При применении полярных конденсаторов с оксидным диэлектриком в импульсных режимах и при пульсирующем напряжении необходимо учитывать, что постоянная составляющая напряжения должна иметь значение, исключающее возможность появления на конденсаторе напряжения обратной полярности, а сумма постоянного и амплитуды переменного или импульсного напряжения не должна превышать номинального напряжения. 3.3. УКАЗАНИЯ ПО ВЫБОРУ И ЭКСПЛУАТАЦИИ КОНДЕНСАТОРОВ Эксплуатационная надежность конденсаторов во многом определяется правильным выбором типов конденсаторов при проектировании аппаратуры 'использовании их в режимах, не превышающих допустимые. Для правильного выбора конденсаторов необходимо на основе анализа требований к аппаратуре определить: значения номинальных параметров и допустимые их изменения в процессе эксплуатации (емкость, напряжение, сопротивление изоляции и др.); допустимые режимы и рабочие электрические нагрузки (диапазон рабочих частот, амплитуда и частота переменной составляющей напряжения, реактивная мощность, параметры импульсного режима и др.); эксплуатационные факторы (интервал рабочих температур, величины механических нагрузок и относительной влажности окружающей среды и др.); показатели надежности, долговечности и сохраняемости конденсаторов; конструкцию конденсаторов, способы монтажа, габариты и массу. В целях повышения надежности и долговечности конденсаторов во всех возможных случаях следует использовать их при менее же-
стких нагрузках и в облегченных режимах по сравнению с допустимыми. Указания по монтажу и креплению конденсаторов. Применяемые способы монтажа и крепления конденсато
Воспользуйтесь поиском по сайту: ©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...
|