Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

Типы трубопроводной арматуры




Рассмотрим отдельно типы арматуры.

Задвижки

Задвижка (англ. gate valve) — арматурное устройство, имеющее затвором в виде листа, диска или клина, перемещающихся вдоль уплотнительных колец седла корпуса перпендикулярно оси потока среды. Задвижки могут быть проходными и суженными, в которых отверстия уплотнительных колец меньше трубопровода.

Задвижка 1-корпус, 2- крышка, 3- клин, 4- шпиндель, 5- втулка ходовая, 6- гайка откидного болта, 8- откидной болт, 9- прокладеа,10- уплотнительный состав(сальник) 11- маховик (вентиль),13- втулка зажимная.

 

По геометрии затвора задвижки различаются клиновые и параллельные задвижки.

Клиновая задвижка

Клиновая задвижка оснащена клиновым затвором с уплотнительными поверхностями, расположенными под углом друг к другу. Клин затвора может быть цельным жестким, цельным упругим или составным двухдисковым.

Параллельная задвижка

Параллельная задвижка оснащена затвором, уплотнительные поверхности которого параллельны друг другу. Задвижка параллельная может быть шиберной (однодисковой) или двухдисковой.

Преимущества задвижек

Преимуществом задвижек является отсутствие преодоления давления среды при перемещении рабочего органа. Это даёт возможность усилие, необходимое для перемещения затвора.

Шпиндели задвижек

Задвижки могут иметь выдвижной шпиндель (шток) и невыдвижной (вращаемый шпиндель). Они разнятся конструкцией винтовой пары, посредством которой перемещается затвор. Строительный размер меньше у задвижек с вращаемым шпинделем.

Недостатки задвижек

При перемещении рабочего органа задвижки возникает сильное трение. Задвижки имеют большую строительную высоту вследствие необходимости выдвижения штока.

Применение задвижек

Задвижки эксплуатируются на трубопроводах где требуется плавное перекрытие сечения с целью предотвращения гидравлического удара.

В системах вентиляции и кондиционирования воздуха (а также, например, в печном отоплении) аналогом задвижки является вентиляционный шибер — металлический лист прямоугольной формы, перемещающийся в направляющих перпендикулярно оси воздуховода.

Клапаны

Клапаны (англ. globe valve) — детали арматуры с затвором в виде плоской или конусной тарелки, двигающимся возвратно-поступательно вдоль центральной оси уплотнительной поверхности седла корпуса. В некоторых конструкциях клапанов затвор движется по дуговой траектории.

 

Рисунок 2. Межфланцевый дисковый обратный клапан (при монтаже располагается между фланцами).

 

Клапаны — наиболее распространенный вид трубопроводной арматуры. Они играют основную роль в конструкциях входят в конструкцию множества регуляторов.

 

Клапаны имеют множество разновидностей по типу действия:

  • предохранительные,
  • запорные,
  • регулирующие.

Затворы клапанов

Клапаны называются тарельчатыми, если их затвор имеет вид тарелки, или игольчатыми — конусной иглы.

Седло клапана

Клапаны могут быть односедельными и двухседельными. В конструкции двухседельных клапанов имеется пара сёдел, перекрываемых, соответственно, парой тарелок.

Мембранные клапаны

Затвор в мембранном клапане — упругая гибкая мембрана, прогибающаяся под действием приложенного усилия перпендикулярно оси движения потока. Седлом является край перегородки, стоящей поперёк канала. При прогибе мембрана плотно примыкает к краю перегородки и перекрывает свободное сечение для прохода потока.

Шланговые клапаны

В шланговом клапане канал для протока рабочей жидкости представляет из себя упругий деформируемый шланг, пережимающийся при закрытии клапана.

Вентили

Вентиль — клапан, затвор которого перемещается с помощью резьбовой пары.

 

 


Рисунок 3. Вентиль сильфонный
с соединительными фланцами

 

Вентили изготавливают как в муфтовом (резьбовом) исполнении, так и для соединения с фланцами труб.

Преимущества вентилей

Основное преимущество вентилей — отсутствие трения уплотнительных поверхностей в момент закрытия, так как затвор движется перпендикулярно, что уменьшает опасность повреждения (задиров).

Высота вентилей меньше, чем у задвижек, ввиду того что ход шпинделя невелик и обычно составляет не более четверти диаметра трубопровода. Однако строительная длина вентилей больше, чем у задвижек, так как требуется развернуть поток внутри корпуса.

Недостатки вентилей

Недостатком клапанов является большое гидравлическое сопротивление, вследствие того что

  1. направление потока рабочей среды изменяется внутри корпуса устройства дважды
  2. мало проходное сечение седла.

Вентили эксплуатируются только при определенном направлении движения рабочей среды: поток должен подтекать под тарелку и в закрытом положении давить на тарелку со стороны седла. При открывании вентиля давление способствует отрыву тарелки от седла. Если же вентиль будет ориентирован в противоположном направлении, то в закрытом состоянии давление будет придавливать тарелку к седлу и создавать значительные трудности при открытии. Это может повлечь срыв тарелки со штока и вентиль выйдет из строя.

Заслонки (англ. butterfly valve) — устройства арматуры с затвором в виде диска или прямоугольника, поворачивающимся на оси, расположенной перпендикулярно проходу. Затвор заслонки движется по дуге.

Рисунок 4.Заслонка
дроссельная фланцевая.

 

 

Применение заслонок

 

Заслонки наиболее часто используются на трубопроводах больших диаметров, малых давлениях среды и пониженных требованиях к герметичности запорного органа.

Заслонки применяют в вентиляции и кондиционировании воздуха на воздуховодах, а так же на различных газоходах, то есть там, где имеют место большие диаметры трубопроводов, небольшие давления и невысокие требования к герметичности.

По количеству установленных пластин различаются заслонки одинарные и многостворчатые. На капельных жидкостях заслонки применяют редко, так как их конструкция не обеспечивает надежной герметичности перекрытия прохода. На газах дроссельные заслонки (throttle) ввиду простоты конструкции и надежности применяют очень часто для регулирования и отключения расхода.

Краны

Кран (англ. tap valve) — трубопроводное устройство с затвором в форме тела вращения, поворачивающимся вокруг своей оси на 90° по отношению к оси движения потока рабочей среды.

Рисунок 6. Кран шаровой нержавеющий с соединительными фланцами.

 

Затвор крана иногда называют пробкой. Пробка крана имеет отверстие, перпендикулярное оси тела вращения, предназначенное для прохода среды. Если кран открыт, отверстие пробки располагается соосно оси движения среды, если кран закрыт, отверстие пробки перпендикулярно потоку.

В отличие от вентиля и задвижки, для того, чтобы открыть или закрыть кран, требуется совершить не несколько оборотов шпинделя, а всего один поворот пробки на 90º. Следовательно, краны, как правило, снабжают не маховиком, а рукояткой.

В зависимости от числа рабочих положений пробки кранов бывают двухходовыми или трехходовыми. Принципиально могут быть краны и на большее число положений, однако они нашли применение только в лабораторной арматуре. В зависимости от формы отверстий на пробке краны могут выполнять различные функции.

В зависимости от формы тела вращения, образующего затвор, краны бывают:

  • цилиндрическими,
  • конусными,
  • шаровыми.

 

Рисунок 7. Кран шаровой

Рисунок 8. Кран шаровой

Поршневые компрессоры

Поршневые компрессоры — это наиболее распространенные и многообразные по конструкции компрессоры. Поршневые компрессоры применяются в текстильном производстве, машиностроении, криогенной технике, химической и холодильной промышленности. Поршневые промышленные компрессоры различают по устройству компрессора и расположению цилиндров, устройству шатунного механизма и числу степеней сжатия.

 

Принцип работы поршневого компрессора

Поршневой компрессор — это компрессор, у которого поршень в цилиндре совершает возвратно-поступательные движения. Самый простой поршневой компрессор состоит из цилиндра и поршня, между которыми имеется небольшой зазор. Движение поршня обеспечивается кривошипношатунным механизмом от вала с приводным двигателем.

Нагнетательный и всасывающий клапаны поршневого компрессора расположены в крышке цилиндра. За два хода поршня (один оборот вала), совершается полный рабочий процесс в каждом цилиндре компрессора. При движении поршня из цилиндра в конденсатор надпоршневом пространстве создается разрежение, и пары хладагента всасываются в цилиндр из испарителя через открывающийся клапан. При обратном ходе поршня пары сжимаются и давление возрастает. Всасывающий клапан при этом закрывается, через нагнетательный клапан сжатые пары выталкиваются в конденсатор. Затем направление движения поршня меняется, нагнетательный клапан закрывается, и компрессор вновь отсасывает пары из испарителя.

 

 

Состав поршневого компрессора


В изготовленном из чугуна корпусе компрессора, находится цилиндр и картер, в картере расположен коленчатый вал. В нижнюю часть картера залито масло, которое обеспечивает смазку трущихся деталей компрессора. В подшипниках лежат коренные шейки коленчатого вала.

Выходящая из картера наружу шейка вала, уплотнена сальником, чтобы не было течи хладагента через зазор между валом и подшипником. На шейке вала напрессован маховик, который вращается вместе с валом от электродвигателя при помощи ременной передачи.

При помощи поршневого пальца шатун соединен своей верхней головкой с поршнем. При вращении вала поршень попеременно движется вдоль оси цилиндра от одного крайнего положения до другого на величину двойного радиуса кривошипа.

На поршне надеты кольца, трущиеся по зеркалу цилиндра и уплотняющие (благодаря своей упругости) рабочую полость цилиндра, чтобы пары хладагента не могли попасть в картер.

Верхний торец цилиндра закрыт головкой. Головка цилиндра состоит из двух камер: всасывания и нагнетания. В каждой камере находится клапан, соответственно называемый всасывающим и нагнетательным. Клапаны расположены по обе стороны клапанной плиты и закрывают имеющиеся в ней отверстия, которые соединяют камеры головки с цилиндром. К камере всасывания подходит всасывающий трубопровод, соединенный с испарителем, к камере нагнетания — нагнетательный трубопровод, соединенный с конденсатором.

Аксиально-поршневой насос. Устройство, принцип работы

Аксиально-поршневые насосы и гидромоторы получили широкое распространение при конструировании объемных гидроприводов. Устройство аксиально-поршневого насоса основывается на кривошипно-шатунном механизме, который является кинематической основой гидромашин такого типа. В кривошипно-шатунном механизме движение параллельных друг другу цилиндров идет вместе с поршнями. В это же время вращение вала кривошипа перемещает поршни относительно цилиндров. Существует две основные схемы аксиально-поршневых гидромашин – с наклонным блоком цилиндров и наклонным диском.

 

 

 

На рисунке выше представлен вариант аксиально-поршневого насоса с наклонным диском. Принцип его действия достаточно прост и надежен. Движение начинается с ведущего вала, который вращает блок цилиндров. Когда блок совершает поворот вокруг оси насоса в 180 градусов, поршни выталкивают жидкость из цилиндра, поступательно двигаясь. Следующий поворот на 180 градусов поршень делает, всасывая рабочую жидкость. Торцовая поверхность блока цилиндров, отшлифованная и обработанная, прилегает к неподвижному гидрораспределителю (6), поверхность которого также обработана и в котором имеются полукольцевые пазы (7). Один паз соединяется со всасывающим трубопроводом через каналы, другой присоединен к напорному трубопроводу. Блок цилиндров содержит отверстия, которые соединяют гидрораспределитель и цилиндры блока.

 

Рабочая жидкость под давлением через каналы поступает в аксиально-поршневой насос. Из-за давления жидкость приводит в движение поршни, которые вращают вал и диск.

 

А вообще, прежде чем браться за ремонт аксиально-поршневого насоса, советуем правильно оценить свои силы и знания в области гидравлики. Мы настоятельно рекомендуем сначала пройти курсы повышения квалификации по специальности гидравлика, в крайнем случае можно пройти дистанционные курсы гидравликов, тем более, что заказать этот курс можно не выходя из дома. Это вам обойдётся намного дешевле, чем если насос станет не ремонтопригодным после вашего ремонта.

 

Несколько основных функций выполняет система распределения:
упорный подшипник, воспринимающий сумму осевых сил давления от всех цилиндров; переключатель соединения цилиндров с линиями всасывания и нагнетания рабочей жидкости; вращающееся уплотнение, разобщающее линии всасывания и нагнетания одну от другой и от полостей вокруг.

 

Для правильной работы аксиально-поршневого насоса необходимо, чтобы поверхности системы распределения были взаимно центрированы, а одна из них могла свободно двигаться, чтобы образовывался слой смазки. Этому помогает расположенное между блоком цилиндров и валом подвижное эвольвентное шлицевое соединение. Для того, чтобы не произошло расхождение стыка системы под действием силы поршней, конструкция предполагает наличие центрального прижима блока пружиной.

 

Одновременно с этим процессом нижние поршни нагнетают рабочую жидкость, вытесняя ее из цилиндров. Утечку масла из нерабочей полости насоса предупреждает манжетное уплотнение (2) в передней крышке гидронасоса.

 

Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...