Б4. Ткани организма, их типы, отличия различных типов тканей.
Стр 1 из 6Следующая ⇒ Б1. Определение физиологии как науки. Методы физиологии. Физиология – наука о жизнедеятельности целостного организма и его отдельных частей: клеток, тканей, органов, анатомофизических систем. Физиология изучает: ─ механизмы функционирования целостного организма; ─ связь органов и систем между собой; ─ механизмы приспособления к окружающей среде. Организм представляет собой целостную саморегулирующуюся систему. Методы физиологии в основном экспериментальные. Ставят эксперименты на животных. На людях также проводят различные наблюдения, например электрокардиографические (ЭКГ).
Б2. Понятие гомеостаза. Основные принципы гомеостаза. На заре эволюции жизнь зародилась в водной среде. С появлением многоклеточных организмов клетки утратили связь с внешней средой. Они окружены системой крово- и лимфообращения, по которым питательные вещества поступают из внешней среды, а также удаляются продукты жизнедеятельности. У многоклеточных организмов возникла возможность поддерживать постоянство состава внутренней среды. Благодаря этому организм сохраняет различные характеристики своей среды (температуру, рН среды…). Клодом Бернаром (франз. исслед.) был введен термин «гомеостаз» – постоянство внутренней среды организма. Принципы гомеостаза: 1. В основе гомеостаза лежит способность к саморегуляции функции, т.е. отклонение любого параметра гомеостаза является стимулом возвращения его к норме. Действие t-го фактора организма (озноб) 2. Для сохранения гомеостаза в организме сущ-ет дублирование приспособительных механизмов. 3. Сигнальность об отклонении. В случае изменения параметров внутренней среды специальные клетки (рецепторы) улавливают это изменение. Импульсы передаются в центральную нервную систему, оттуда сигналы идут к органам-наполнителям и включаются механизмы направленные на сохранение параметров в заданных границах.
Гомеостаз человека отличается от гомеостаза животных. Помимо физиологических механизмов человек использует социальные приспособления (одежда, обувь) для сохранения гомеостаза.
Б3. Уровни структурной и функциональной организации в организме. Понятие о клетке, внутриклеточных структурах. Клеточный Клетка – это структурная и функциональная единица живых организмов. Впервые усовершенствовал микроскоп Роберт Гук в сер. 18 века. Установил, что растения построены из ячеек, он назвал их клетками. В 1839 г. Шванн обобщил накопленный материал и создал клеточную теорию строения живых организмов. Наука, изучающая строение и функцию клеток, называется цитология. Клетка состоит из цитоплазмы и ядра. В цитоплазме различают: клеточную оболочку (мембрана); органеллы; включения; гиалоплазму В ядре различают: ядерную оболочку; ядрышко; хроматиновые структуры; ядерный сок Ядро. Есть ядерная оболочка. Она образована двумя мембранами, отделенными друг от друга перпендикулярным пространством. Хроматин – это вещество, в котором присутствует ДНК. В составе ядра есть ядрышко (1-2). Происходит синтезРНК, синтез рибосом в клетке. Значение ядра: Особую роль играют хромосомы ядра. В них содержится генетический код каждой клетки. Благодаря этому обеспечивается точное воспроизведение признаков и свойств данной клетки. Кроме этого, ядро участвует: ─ в процессах формирования клетки; ─ в процессах синтеза белка ─ в образовании рибосом и РНК ─ в регуляции окислительных процессов. Б3. Цитоплазма Цитоплазматическая мембрана отделяет содержимое клетки от окр. среды. Она же регулирует поступление веществ в клетку и удаление продуктов жизнедеятельности из нее. Проникновение веществ туда и обратно может происходить по законам диффузии, а может и путем активного транспорта против градиента концентрации с затратой энергии (2 процесса: фагоцитоз и пиноцитоз).
Фагоцитоз – поглощение клеткой твердых частиц. Пиноцитоз – жидкостей. Органеллы. 1. Эндоплазматическая сеть – это система внутриклеточных канальцев, вакуолей, цистерн. Эта система контактирует с мембраной клетки, а также с ядерной оболочкой. Эта сеть предназначена для транспорта веществ внутри клетки. Эндоплазматический ретикулум. 2. Рибосомы. Плотные сферические гранулы, диаметр 0,015-0,02 микрометров. Рибосомы – это место синтеза белка в клетке. Часть их располагается свободно, а часть расположена на эндоплазматической сети. 3. Митохондрии. Небольшие гранулы длиной 0,5-7 мкм. имеют наружную мембрану и внутреннюю, которая имеет складчатое строение. Ее складки называют митохондриальными кристаллами. Митохондрии называют энергетическими станциями в клетке. В них происходят окислительные процессы, которые идут до образования конечных продуктов: углекислого газа и воды. При этом выделяющаяся энергия аккумулируется в виде АТФ. В митохондриях образуется 75% всей энергии клетки. 4. Внутриклеточный пластинчатый комплекс. Расположен возле ядра, участвует в образовании секретов, выделяемых клетками, т.е. в удалении продуктов обмена веществ из клетки. 5. Лизосомы. Величина 0,2-0.8 мкм. Содержит в большом количестве гидролитические ферменты (способны расщеплять белки, жиры, углеводы). При разрушении большого количества лизосом в клетке, клетка самопереваривается (уничтожение клетки). Генетически запрограммированная ветвь. 6. Центрисомы. Располагаются около ядра. Принимают активное участие в делении клетки. Связаны с двигательной активностью клетки. Включения – это обособленные скопления различных веществ в цитоплазме, они непостоянны. К ним относят: жировые камни, пигментные отложения и т. д. Гиалоплазм а – это свободное от органелл вещество цитоплазмы. Она гомогенна и лишена структуры. Б4. Ткани организма, их типы, отличия различных типов тканей.
Ткань – это сложившаяся в процессе филогенеза система клеточных и неклеточных структур, обладающих одинаковым строением и л определенную функцию. У человека 4 типа тканей: 1) эпителиальная; 2) соединительная; 3) мышечная; 4) нервная Эпителиальные ткани. Эпителий выстилает поверхность тела человека, внутреннюю поверхность полых органов и образует большинство желез организма. Эпителий бывает ороговевающий и неороговевающий. Эпителий представляет собой пласты клеток, которые расположены на базальной мембране. Они лишены кровеносных сосудов и обладают высокой способностью к регенерации. Функции эпителия: защитная; питательная (тропическая): всасывание питательных веществ в ЖКТ; секреторная: из эпителия построено большинство желез внутренней секреции. Соединительные ткани. Разнообразны по своему строению. Состоят из клеток и межклеточного вещества. Межкл. вещ-во преобладает. Соединительные ткани хорошо регенерируют, пластичны, приспосабливаются к условиям существования. Различают несколько видов соединительной ткани: -кровь и лимфа; -рыхлая волокнистая соединительная ткань (входит в состав внутренних органов, сопровождает кровеносные сосуды); -плотная волокнистая соединительная ткань (сухожилия, связки); -хрящевая ткань (на суставных поверхностей костей, воздухоносные пути, на гортани); -костная ткань. Мышечные ткани. Они различны по строению, но их объединяет общее свойство – способность к сокращению. Разновидности: 1. гладкая мышечная ткань – расположена в стенках кровеносных сосудов, в стенках внутренних полых органов, желудок, входит в состав кишечника, мочевой пузырь, матка. Структурная единица – гладкое мышечное волокно. Деятельность гладкой мускулатуры регулируется вегетативной НС и не подчиняется воли человека. 2. Поперечно-полосатая мышечная ткань. Из нее построена вся скелетная мускулатура. Структурная единица – поперечно-полосатое мышечное волокно. Сокращение не подчиняется воли человека. 3. Мышечная ткань сердца – способна сама генерировать импульсы, что обеспечивает способность к сокращению изолированного сердца.
Нервная ткань. Состоит из нервных клеток, обладающих специфическими функциями и нейроглии, которая выполняет тропическую, защитную, опорную функцию. Нервная клетка (нейро) состоит из тела и отростков. Отростки делят на аксоны, по которым импульсы распространяются от тела нервной клетки, и дендрит, по которому импульс приходит к телу нервной клетки. Отростки нервных у клеток одеты в оболочку и вместе с ними называются нервными волокнами. Нервные клетки характеризуются способностью воспринимать раздражение, приходить в состояние возбуждения и передавать его другим клеткам организма. Благодаря этому осуществляется взаимосвязь органов и тканей. Б5. Петром Анохиным и его школой была изучена принципиальная организация целенаправленных реакций организма. Это не анатомическое образование. Она представляет собой совокупность нейронов нервных центров и разнообразных периферических органов, объединенных полезным результатом.
Воспользуйтесь поиском по сайту: ©2015 - 2025 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...
|