Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

Контроль уровня масла в трансформаторе




Последовательное и параллельное соединение проводников

Проводники в электрических цепях могут соединяться последовательно и параллельно.

При последовательном соединении проводников (рис. 1.9.1) сила тока во всех проводниках одинакова:

I 1 = I 2 = I.

 

Рисунок 1.9.1. Последовательное соединение проводников

По закону Ома, напряжения U 1 и U 2 на проводниках равны

U 1 = IR 1, U 2 = IR 2.

Общее напряжение U на обоих проводниках равно сумме напряжений U 1 и U 2:

U = U 1 + U 2 = I (R 1 + R 2) = IR,

где R – электрическое сопротивление всей цепи. Отсюда следует:

R = R 1 + R 2.

При последовательном соединении полное сопротивление цепи равно сумме сопротивлений отдельных проводников.

Этот результат справедлив для любого числа последовательно соединенных проводников.

При параллельном соединении (рис. 1.9.2) напряжения U 1 и U 2 на обоих проводниках одинаковы:

U 1 = U 2 = U.

Сумма токов I 1 + I 2, протекающих по обоим проводникам, равна току в неразветвленной цепи:

I = I 1 + I 2.

Этот результат следует из того, что в точках разветвления токов (узлы A и B) в цепи постоянного тока не могут накапливаться заряды. Например, к узлу A за время Δ t подтекает заряд I Δ t, а утекает от узла за то же время заряд I 1Δ t + I 2Δ t. Следовательно, I = I 1 + I 2.

Рисунок 1.9.2. Параллельное соединение проводников

Записывая на основании закона Ома

где R – электрическое сопротивление всей цепи, получим

При параллельном соединении проводников величина, обратная общему сопротивлению цепи, равна сумме величин, обратных сопротивлениям параллельно включенных проводников.

Этот результат справедлив для любого числа параллельно включенных проводников.

Формулы для последовательного и параллельного соединения проводников позволяют во многих случаях рассчитывать сопротивление сложной цепи, состоящей из многих резисторов. На рис. 1.9.3 приведен пример такой сложной цепи и указана последовательность вычислений.

Рисунок 1.9.3. Расчет сопротивления сложной цепи. Сопротивления всех проводников указаны в омах (Ом)

Следует отметить, что далеко не все сложные цепи, состоящие из проводников с различными сопротивлениями, могут быть рассчитаны с помощью формул для последовательного и параллельного соединения. На рис. 1.9.4 приведен пример электрической цепи, которую нельзя рассчитать указанным выше методом.

Рисунок 1.9.4. Пример электрической цепи, которая не сводится к комбинации последовательно и параллельно соединенных проводников

Цепи, подобные изображенной на рис. 1.9.4, а также цепи с разветвлениями, содержащие несколько источников, рассчитываются с помощью правил Кирхгофа.

 

 

2 Асинхронный двигатель - это асинхронная машина, предназначенная для преобразования электрической энергии переменного тока в механическую энергию. Само слово “асинхронный” означает не одновременный. При этом имеется ввиду, что у асинхронных двигателей частота вращения магнитного поля статора всегда больше частоты вращения ротора. Работают асинхронные двигатели, как понятно из определения, от сети переменного тока.

Устройство

 

На рисунке: 1 - вал, 2,6 - подшипники, 3,8 - подшипниковые щиты, 4 - лапы, 5 - кожух вентилятора, 7 - крыльчатка вентилятора, 9 - короткозамкнутый ротор, 10 - статор, 11 - коробка выводов.

Основными частями асинхронного двигателя являются статор (10) и ротор (9).

Статор имеет цилиндрическую форму, и собирается из листов стали. В пазах сердечника статора уложены обмотки статора, которые выполнены из обмоточного провода. Оси обмоток сдвинуты в пространстве относительно друг друга на угол 120°. В зависимости от подаваемого напряжения концы обмоток соединяются треугольником или звездой.

Роторы асинхронного двигателя бывают двух видов: короткозамкнутый и фазный ротор.

Короткозамкнутый ротор представляет собой сердечник, набранный из листов стали. В пазы этого сердечника заливается расплавленный алюминий, в результате чего образуются стержни, которые замыкаются накоротко торцевыми кольцами. Эта конструкция называется "беличьей клеткой". В двигателях большой мощности вместо алюминия может применяться медь. Беличья клетка представляет собой короткозамкнутую обмотку ротора, откуда собственно название.

Фазный ротор имеет трёхфазную обмотку, которая практически не отличается от обмотки статора. В большинстве случаев концы обмоток фазного ротора соединяются в звезду, а свободные концы подводятся к контактным кольцам. С помощью щёток, которые подключены к кольцам, в цепь обмотки ротора можно вводить добавочный резистор. Это нужно для того, чтобы можно было изменять активное сопротивление в цепи ротора, потому что это способствует уменьшению больших пусковых токов. Подробнее о фазном роторе можно прочитать в статье - асинхронный двигатель с фазным ротором.

Принцип работы

При подаче к обмотке статора напряжения, в каждой фазе создаётся магнитный поток, который изменяется с частотой подаваемого напряжения. Эти магнитные потоки сдвинуты относительно друг друга на 120°, как во времени, так и в пространстве. Результирующий магнитный поток оказывается при этом вращающимся.

Результирующий магнитный поток статора вращается и тем самым создаёт в проводниках ротора ЭДС. Так как обмотка ротора, имеет замкнутую электрическую цепь, в ней возникает ток, который в свою очередь взаимодействуя с магнитным потоком статора, создаёт пусковой момент двигателя, стремящийся повернуть ротор в направлении вращения магнитного поля статора. Когда он достигает значения, тормозного момента ротора, а затем превышает его, ротор начинает вращаться. При этом возникает так называемое скольжение.

Скольжение s - это величина, которая показывает, насколько синхронная частота n1 магнитного поля статора больше, чем частота вращения ротора n2, в процентном соотношении.

Скольжение это крайне важная величина. В начальный момент времени она равна единице, но по мере возрастания частоты вращения n2 ротора относительная разность частот n1-n2 становится меньше, вследствие чего уменьшаются ЭДС и ток в проводниках ротора, что влечёт за собой уменьшение вращающего момента. В режиме холостого хода, когда двигатель работает без нагрузки на валу, скольжение минимально, но с увеличением статического момента, оно возрастает до величины sкр- критического скольжения. Если двигатель превысит это значение, то может произойти так называемое опрокидывание двигателя, и привести в последствии к его нестабильной работе. Значения скольжения лежит в диапазоне от 0 до 1, для асинхронных двигателей общего назначения оно составляет в номинальном режиме - 1 - 8 %.

Как только наступит равновесие между электромагнитным моментом, вызывающим вращение ротора и тормозным моментом создаваемым нагрузкой на валу двигателя процессы изменения величин прекратятся.

Выходит, что принцип работы асинхронного двигателя заключается во взаимодействии вращающегося магнитного поля статора и токов, которые наводятся этим магнитным полем в роторе. Причём вращающий момент может возникнуть только в том случае, если существует разность частот вращения магнитных полей.

 

Регулирование скорости асинхронного двигателя

 

  Наиболее распространены следующие способы регулирования скорости асинхронного двигателя: изменение дополнительного сопротивления цепи ротора, изменение напряжения, подводимого к обмотке статора, двигателя изменение частоты питающего напряжения, а также переключение числа пар полюсов. Регулирование частоты вращения асинхронного двигателя путем введения резисторов в цепь ротора Введение резисторов в цепь ротора приводит к увеличению потерь мощности и снижению частоты вращения ротора двигателя за счет увеличения скольжения, поскольку n = nо(1 - s).   Регулирование частоты вращения асинхронного двигателя изменением напряжения на статоре Изменение напряжения, подводимого к обмотке статора асинхронного двигателя, позволяет регулировать скорость с помощью относительно простых технических средств и схем управления. Для этого между сетью переменного тока со стандартным напряжением U1ном и статором электродвигателя включается регулятор напряжения.   Регулирование частоты вращения асинхронного двигателя изменением частоты питающего напряжения Так как частота вращения магнитного поля статора nо = 60f/р, то регулирование частоты вращения асинхронного двигателя можно производить изменением частоты питающего напряжения. Регулирование частоты вращения асинхронного двигателя переключение числа пар полюсов Ступенчатое регулирование скорости можно осуществить, используя специальные многоскоростные асинхронные двигатели с короткозамкнутым ротором. Из выражения nо = 60f/р следует, что при изменении числа пар полюсов р получаются механические характеристики с разной частотой вращения nо магнитного поля статора. Так как значение р определяется целыми числами, то переход от одной характеристики к другой в процессе регулирования носит ступенчатый характер.   ВЫБОР МАРКИ СЕЧЕНИЯ ПРОВОДОВ И КАБЕЛЕЙи с Марка зависит от условий, в которых он будет эксплуатироваться. Если провод подвергается постоянному нагреву, то в качестве изоляции используют жаропрочную кремнийорганическую резину в оплетке из стекловолокна, пропитанную специальным термостойким лаком – все эти материалы изоляции в совокупности, обеспечивают непрерывную работу электротехнических изделий, не смотря на постоянное температурное воздействие, примером этому является марка РКГМ. Для прокладки под землей, необходимы кабели с многослойной бронированной изоляцией, которая препятствует механическому повреждению оболочки, например: ААШв, ААШп, ААБл, ААБ2л и т. д. Воздушные линии монтируют с использованием открытых жил без изоляции, или устанавливается СИП - самонесущий изолированный провод, предназначенный для прокладки под открытым небом без дополнительной защиты. Его изоляция состоит из светостабилизированного, атмосферостойкого полиэтилена, что предотвращает разрушение осадками и другими погодными условиями. Чтобы электрифицировать жилые и офисные помещения используются марки кабеля ВВГ-нг-Ls и ВВГ-нг, с оболочкой из негорючего поливинилхлорида, не поддерживающего горения, с пониженным дымо и газовыделением. Это повышает защиту от возникновения пожара и уменьшает выделение едких и опасных веществ, если он все же произошел. Прокладка противопожарных сетей производится кабелями марки ВВГ-нг-FRLS и КПСЭ-нг-FRLS. Они имеют изоляцию, способную передавать напряжение и электрический сигнал находясь в открытом огне более 2,5 часов. Витая пара используется для передачи данных – это сетевой компьютерный провод. Им прокладывают компьютерные и телефонные сети и линии. Он не имеет изоляции с особыми свойствами, так как при его работе не происходит нагрева, поэтому его разрушение возможно только при механическом воздействии. Марки ПВС и КГ применяются в основном в промышленности, для подключения различных движущихся механизмов. Его основные особенности – это гибкая не трескающаяся оболочка и многожильная токоведущая часть, которая не ломается при многократном изгибании. Для правильной работы оборудования помимо правильного выбора марки проводов и кабелей необходимо грамотно рассчитать сечение жилы. Для этого существуют различные формулы, по которым это можно сделать, но это зачастую долго и не практично. Чтобы правильно выбрать сечение существует «таблица выбора сечения проводов и кабелей». В ней Вы можете подобрать правильное сечение исходя, из мощности прибора, а так же узнать потребляемый ток и рассчитать устройство защиты - автоматический выключатель. Все сведения в таблице примерные, и в каждом отдельном случае рекомендуем проконсультироваться со специалистом. Наши мастера помогут выбрать необходимую марку кабеля и подобрать соответствующее сечение, а так же выполнят его прокладку необходимым способом и выполнят любые электромонтажные работы.

 

Оконцевание и соединение алюминиевых и медных жил изолированных проводов и кабелей выполняют опрессованием, сваркой, пайкой и механическими сжимами. Выбор способа определяется надежностью контакта, простотой технологии, экономичностью и т. п. Поэтому все способы разделяют на три группы: следует применять, рекомендуется и допускается.

Опрессование.

Этот способ используется для соединения и оконцевания как медных, так и алюминиевых жил проводов, но опрессование алюминиевых жил по сравнению с медными имеет некоторые особенности. Наличие оксидной пленки на жилах, внутренней поверхности гильз в цилиндрической части наконечников усложняет процесс подготовки и создания контакта.
Для получения надежного электрического контакта необходима тщательная очистка соединяемых элементов от оксидной пленки и применение специальных средств защиты от дальнейшего окисления алюминия как в процессе создания контакта, так и во время его эксплуатации. Таким защитным средством служит кварцевазелиновая паста, составленная из технического вазелина и кварцевого песка специального помола.
Защищаемые поверхности покрывают пастой во избежание их дальнейшего окисления. При опрессовании кварц разрушает оксидную пленку, способствует созданию надежных точечных контактов, а вазелин препятствует их окислению в период эксплуатации.
Длина алюминиевой гильзы и цилиндрической части алюминиевого наконечника больше, чем длина медной гильзы и наконечника (увеличение площади вдавливания и числа вдавливаний). При опрессовании алюминиевых жил местным вдавливанием на трубчатой части наконечника образуются две лунки, на гильзе — четыре лунки (по два вдавливания каждой жилы, введенной в гильзу). Для медных жил опрессование производят одним вдавливанием для наконечника и двумя вдавливаниями для соединительных гильз. При использовании двузубого инструмента два вдавливания выполняют в один прием, четыре — в два приема.
Общими требованиями к соединению и оконцеванию жил проводов опрессованием являются: чистота контактной поверхности; соблюдение нормы контактного давления; обеспечение заданной по инструкции глубины опрессования; правильный подбор матриц, пуансонов, наконечников или соединительных гильз; правильное расположение лунок, образуемых в местах вдавливания.
Чистота контактной поверхности обеспечивается удалением с жил остатков изоляции, очисткой гильз и наконечников от грязи и зачисткой внутренней части до металлического блеска.

 

Пайка.

Способ соединения пайкой, являющийся наиболее трудоемким, применяют при соединении и оконцевании медных жил и реже при соединении алюминиевых. Пайку выполняют пропан-бутановой горелкой или бензиновой паяльной лампой с помощью припоя А, ЦО-18 и ЦА-15 для алюминиевых жил и ПОС для медных. В качестве флюса применяют канифоль, стеарин и паяльный жир.
Соединения и ответвления однопроволочных жил алюминиевых проводов сечением 2,5—102 мм выполняют пайкой двойной скрутки с желобом, многопроволочных жил сечением от 16 до 150 мм2 непосредственным сплавлением припоя в разъемной форме или поливом предварительно расплавленного припоя.
Болтовые и винтовые сжимы. Соединения, ответвления и присоединения алюминиевых жил проводов и кабелей, в том числе и ответвления от неразрезных магистралей, выполняют также механическим способом с помощью сжимов.
Для соединения медных проводов светильников с алюминиевыми проводами сети применяют люстровые зажимы. В сжимах с разъемным пластмассовым корпусом осуществляют ответвления от магистральной сети без ее разрезания.
Для производства соединений, оконцеваний и ответвлений алюминиевых и медных жил изолированных проводов и кабелей применяют основные и вспомогательные материалы. К основным материалам относят: пропан, газообразный сжатый кислород для сжигания пропана; припои А, ЦО-12, ЦА-15, ПОС-40; флюсы ВАМИ для растворения оксидной пленки алюминия при сварке жил проводов, а также при оконцевании и ответвлении жил проводов и кабелей и АФ-4а для растворения оксидной пленки алюминия при сварке жил кабелей в соединительных муфтах; кварцевазелиновую пасту; термитные патроны ПАН, ПАТ, ПА в комплекте с алюминиевыми секторными втулками и алюминиевыми гильзами, а также термитными спичками; медные наконечники серии Т и П, медно-алюминиевые серии ТАМ и ШП (штифтовые), алюминиевые серии ТА; медные гильзы серии ГМ, алюминиевые серии ГА и ГАО (для однопроволочных жил) и ответвительные сжимы в пластмассовом корпусе; канифоль и раствор канифоли в спирте; сварочную проволоку СвАК5; сварочные угли. Вспомогательными материалами являются: авиационный или неэтилированный бензин; технический вазелин; ацетон; технический дихлорэтан; асбестовый картон толщиной 2—4 мм и асбестовый шнур; шлифовальная шкурка; обтирочная ветошь, мел, изоляционная лента и полиэтиленовые колпачки; лак и краска.

 

4 Силовой трансформатор — Электротехническое устройство с двумя или более обмотками, который посредством электромагнитной индукции преобразует одну величину переменного напряжения и тока в другую величину переменного напряжения и тока, той же частоты без изменения её передаваемой мощности.[1][2]

Также трансформатором называют понижающий трансформатор, входящий в состав вторичных источников электропитания различных устройств и аппаратуры, обеспечивающий их питание от бытовой электросети.

Контроль уровня масла в трансформаторе

Масло постоянно циркулирует внутри бака.

Принципы охлаждения

В силовом трансформаторе образовано два контура циркуляции масла:

1. внешний;

2. внутренний.

Первый контур представлен радиатором, состоящим из верхнего и нижнего коллекторов, соединенных системой металлических трубок. Через них проходит нагретое масло, которое, находясь в магистралях охладителя, остывает и возвращается в бак.

Внутри бака циркуляция масла может производиться:

· естественным путем;

· принудительно за счет создания давления в системе насосами.

· Защита от проникновения влаги

· Поскольку верхняя часть расширительного бака контактирует с атмосферой, то в ней устанавливают осушитель воздуха, препятствующий проникновению влаги внутрь масла и снижению его диэлектрических свойств.

· Защита от внутренних повреждений

· Важным элементом масляной системы является газовое реле.

 

Принцип и режимы работы

В основу работы силового трансформатора заложены те же законы, что и у обычного:

· Проходящий по входной обмотке электрический ток с изменяющейся по времени гармоникой колебаний наводит внутри магнитопровода меняющееся магнитное поле.

· Изменяющийся магнитный поток, пронизывая витки второй обмотки, наводит в них ЭДС.

 

Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...