Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

Способы защиты оборудования от коротких замыканий в электроустановках

Электрическое напряжение

Этот термин используется как характеристика физической величины, выражающей затраченную работу по переносу пробного единичного электрического заряда из одной точки в другую без изменения характеров размещения остальных зарядов на действующих источниках полей.

Поскольку начальная и конечная точки обладают различными потенциалами энергии, то работа на перемещение заряда, или напряжение, совпадает с соотношением разности этих потенциалов.

В зависимости от протекающих токов используются различные термины и способы вычисления напряжения. Оно может быть:

1. постоянным — в цепях электростатики и постоянного тока;

2. переменным — в схемах с переменными и синусоидальными токами.

Для второго случая используются такие дополнительные характеристики и разновидности напряжения, как:

· амплитуда — наибольшее отклонение от нулевого положения оси абсцисс;

· мгновенная величина, которая выражается в конкретный момент времени;

· действующее, эффективное или, называемое по-другому, среднеквадратичное значение, определяемое по совершаемой активной работе одного полупериода;

· средневыпрямленное, рассчитываемое по модулю выпрямленного значения одного периода гармоники.

 

Сила тока (часто просто «ток») в проводнике — скалярная величина, численно равная заряду, протекающему в единицу времени через сечение проводника.
Единица измерения в системе СИ — 1 Ампер (А) = 1 Кулон / секунду.

Напряже́ние (разность потенциалов, падение потенциалов) между точками A и B — отношение работы электрического поля при переносе пробного электрического заряда из точки A в точку B к величине пробного заряда.
Единицей измерения напряжения в системе СИ является вольт.(V)

Электри́ческое сопротивле́ние — скалярная физическая величина, характеризующая свойства проводника и равная отношению напряжения на концах проводника к силе электрического тока, протекающему по нему. [1] Размерность электрического сопротивления dir R = L2MT−3I−2.
В международной системе единиц (СИ) единицей сопротивления является Ом (Ω, Ом).

Электрическое напряжение:
  • U = R* I - Закон Ома для участка цепи
  • U = P / I
  • U = (P*R)1/2
Электрическая мощность:
  • P= U* I
  • P= R* I2
  • P = U 2/ R
Электрический ток:
  • I = U / R
  • I = P/ E
  • I = (P / R)1/2
Электрическое сопротивление:
  • R = U / I
  • R = U 2/ P
  • R = P / I2
   

2 Короткие замыкания в электроустановках

Короткое замыкание – это явление в электротехнике, которое сопровождается замыканием (электрическим соединением) между собой двух или трех фаз, фазы на нулевой проводник, замыкание фазного проводника на землю в сетях с глухозаземленной, а также эффективно заземленной нейтралью в трехфазной сети. Кроме того, коротким замыканием является межвитковое замыкание в электрических машинах.

Характерные особенности данного процесса – это значительное увеличение тока и падение напряжения. Рост тока происходит до значений, превышающих номинальный в несколько раз.

Общепринятое буквенное сокращение данного явления – КЗ. В зависимости от количества замыкаемых фаз различают несколько видов коротких замыканий.

Однофазное КЗ,Двухфазное КЗ, Трехфазное КЗ, Одно и Двух фазное на землю

Причины возникновения короткого замыкания

Основная причина возникновения короткого замыкания – нарушение изоляции оборудования электроустановок, в том числе кабельных и воздушных линий электропередач. Приведем несколько примеров возникновения КЗ по причине нарушения изоляции.

При проведении земляных работ был поврежден высоковольтных кабель, что привело к возникновению междуфазного короткого замыкания. В данном случае повреждение изоляции произошло в результате механического воздействия на кабельную линию.

В открытом распределительном устройстве подстанции возникло однофазное замыкание на землю в результате пробоя опорного изолятора по причине старения его изоляционного покрытия.

Еще один достаточно распространенный пример – падение ветки или дерева на провода воздушной линии электропередач, что приводит к схлестыванию или обрыву проводов.

 

 

Способы защиты оборудования от коротких замыканий в электроустановках

 

Как и упоминалось выше, короткие замыкания сопровождаются значительным увеличением тока, что приводит к повреждению электрооборудования. Следовательно, защита оборудования электроустановок от данного аварийного режима – основная задача энергетики.

Для защиты от короткого замыкания, как аварийного режима работы оборудования, в электроустановках распределительных подстанций используют различные защитные устройства.

Основная цель всех устройств релейной защиты – это отключение выключателя (или нескольких), которые питаютучасток сети, на котором возникло короткое замыкание.

В электроустановках напряжением 6-35кВ для защиты линий электропередач от коротких замыканий используют максимально-токовую защиту (МТЗ). Для защиты линий напряжением 110 кВ от коротких замыканий используется дифференциально-фазная защита, как основная защита линий. Кроме того, для защиты ЛЭП 110 кВ в качестве резервных защит используются дистанционная защита и земляная защита (ТЗНП).

В низковольтных сетях для защиты цепей от КЗ используются автоматические выключатели

 

3 Конструкция принцип действия силовых понижающих трансформаторов

Силовой трансформатор - это электрический аппарат, который предназначен для преобразования электрической энергии одного значения напряжения в электрическую энергию другого значения напряжения. Трансформаторы бывают:

· в зависимости от количества фаз: однофазные и трехфазные;

· по количеству обмоток: двухобмоточные и трехобмоточные;

· в зависимости от места их установки: наружной и внутренней установки;

· по назначению: понижающие и повышающие;

Кроме того, силовые трансформаторы различают по группам соединения обмоток, по способу охлаждения. Также при установке трансформаторов учитывают климатические условия.

 

Принцип работы любого силового трансформатора основан на законе электромагнитной индукции. Если к обмотке данного устройства подключить источник переменного тока, то по виткам этой обмотки будет протекать переменный ток, который создаст в магнитопроводе трансформатора переменный магнитный поток. Замкнувшись в магнитопроводе, переменный магнитный поток будет индуктировать электродвижущую силу (ЭДС) в другой обмотке трансформатора. Это объясняется тем, что все обмотки трансформатора намотаны на один магнитопровод, то есть они связаны между собой магнитной связью. Значение индуктируемой ЭДС будет пропорционально количеству витков данной обмотки.

Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...