Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

Молекулярная физика и термодинами ка

МИНИСТЕРСТВО СЕЛЬСКОГО ХОЗЯЙСТВА

РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ УЧРЕЖДЕНИЕ

ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ

КАЗАНСКИЙ ГОСУДАРСТВЕНЫЙ АГРАРНЫЙ УНИВЕРСИТЕТ

Кафедра физики и математики

МЕТОДИЧЕСКИЕ УКАЗАНИЯ

Для заочного отделения к выполнению

Контрольных работ по физике

(часть I «Механика, молекулярная физика»)

Казань – 2008

- 2 -

УДК - 51 (07)

ББК - 22.3р

 

Составители: к. ф.-м. н., доцент Гарифуллина Р.Л., к.ф.- м.н., доцент Лотфуллин Р.Ш. и к. б. н., доцент Никифорова В.И.

 

Редактор: к. ф. - м.н., доцент Лотфуллин Р.Ш.

 

Рецензенты: к.ф.- м.н., доцент кафедры общей физики Казанского государственного университета Ерёмина Р.М., д.т.н., профессор кафедры теории машин и механизмов КГАУ Яруллин М. Г.

 

Обсуждены и одобрены на заседании кафедры физики и математики 26 июня 2008 г., протокол № 9.

 

Обсуждены, одобрены и рекомендованы в печать методической комиссией ИМ и ТС КГАУ 18 сентября 2008 г., протокол № 1.

 

Методические указания составлены для студентов заочного отделения института механизации и технического сервиса при Казанском государственном аграрном университет.

 

 

УДК - 51 (07)

ББК - 22.3р

 

Ó Казанский государственный аграрный университет, 2008

 

– 3 –

ОБЩИЕ МЕТОДИЧЕСКИЕ УКАЗАНИЯ

К РЕШЕНИЮ ЗАДАЧ И ВЫПОЛНЕНИЮ

КОНТРОЛЬНЫХ РАБОТ

1.Часть I «Методических указаний к выполнению контрольных работ» предназначена для решения 2-х первых контрольных работ по общей физике студентами-заочниками Института механизации и технического сервиса (ИМ и ТС) с 6-летним сроком обучения и первой контрольной работы студентами ИМ и ТС с сокращённым сроком обучения.

2. Номера задач, которые студент с 6-летним сроком обучения должен включить в свои контрольные работы, определяются по таблицам вариантов на страницах 26 и 58. Номер варианта совпадает с последней цифрой шифра студента.

3. Для выполнения первой контрольной работы студент ИМ и ТС с сокращённым сроком обучения должен решить 4 задачи (1-ую, 3-ю, 5-ю и 7-ю) своего варианта (номер варианта совпадает с последней цифрой шифра студента) из таблицы на странице 22 и соответственно 4 задачи своего варианта из таблицы на странице 50 (всего 8 задач).

4.Контрольные работы нужно выполнять в школьной тетради, на обложке которой привести сведения, например, по следующему образцу:

Студент ИМ и ТС 2-го курса

Киселев А. В.,Шифр 07-25

Адрес: г. Альметьевск,

ул. Сергеева, 2, кв. 5. Контрольная работа №1 по физике.

5. Условия задач в контрольной работе надо переписать полностью без сокращений.Для замечаний преподавателя на страницах тетради оставлять поля.

6. В конце контрольной работы указать, каким учебником или учебным пособием студент пользовался при изучении физики (название учебника, автор, год издания). Это делается для того, чтобы рецензент в случае необходимости мог указать, что следует студенту изучить для завершения контрольной работы.

 

– 4 –

7. Высылать на рецензию следует одновременно не более одной работы. Во избежание одних и тех же ошибок очередную работу следует высылать только после получении рецензии на предыдущую. Если контрольная работа при рецензировании не зачтена, студент обязан представить ее на повторную рецензию, включив в нее те задачи, решения которых оказались неверными. Повторную работу необходимо представить вместе с не зачтенной.

8. Зачтенные контрольные работы предъявляются экзаменатору. Студент должен быть готов дать пояснения по существу решения задач, входящих в контрольные работы.

9.Решения задач следует сопровождать краткими, но исчерпывающими пояснениями; в тех случаях, когда это возможно, дать чертеж, выполненный с помощью чертежных принадлежностей.

10.Решать задачу надо в общем виде: т.е. выразить искомую величину в буквенных обозначениях величин, заданных в условии задачи. При таком способе решения не производятся вычисления промежуточных величин.

11.После получения расчетной формулы для проверки правильности ее следует подставить в правую часть формулы вместо символов величин обозначения единиц этих величин, произвести с ними необходимые действия и убедиться в том, что полученная при этом единица соответствует искомой величине. Если такого соответствия нет, то это означает, что задача решена неверно (см. пример 4 с. 14-15).

12.Числовые значения величин при подстановке их в расчетную формулу следует выражать только в единицах СИ. В виде исключения допускается выражать в любых, но одинаковых единицах числовые значения однородных величин, стоящих в числителе и знаменателе дроби и имеющих одинаковые степени (см. пример 6 с. 16-17).

13. При подстановке в расчетную формулу, а также при записи ответа числовые значения величин следует записывать как произведение десятичной дроби с однозначащей цифрой перед запятой на соответствующую степень десяти.

 

 

– 5 –

Например, вместо 3520 надо записать 3,52∙103, вместо 0.00129 записать 1,29∙10-3 и т.п.

14. Вычисления по расчетной формуле надо проводить с соблюдением правил приближенных вычислений. Как правило, окончательный ответ следует записывать с тремя значащими цифрами. Это относится и к случаю, когда результат получен с применением калькулятора

I. ФИЗИЧЕСКИЕ ОСНОВЫ КЛАССИЧЕСКОЙ МЕХАНИКИ

Основные формулы

Кинематическое уравнение движения материальной точки (центра масс твердого тела) вдоль оси x,.

х = f(t), где f(t) некоторая функция времени.

Проекция средней скорости на ось х

Средняя путевая скорость

где Ds – путь, пройденный точкой за интервал времени Dt. Путь Ds в отличие от разности координат Dx = x1x2 не может убывать и принимать отрицательные значения, т. е. Ds³O.

Проекция мгновенной скорости на ось х

Проекция среднего ускорения на ось х .

Проекция мгновенного ускорения на ось х

Кинематическое уравнение движения материальной точки по окружности

j=f(t), r=R=const.

Модуль угловой скорости

 

– 6 –

Модуль углового ускорения

Связь между модулями линейных и угловых величин, характеризующих движение точки по окружности:

, at = eR, an = w2 R,

где – модуль линейной скорости; at и аn – модули тангенциального и нормального ускорений; w – модуль угловой скорости; e – модуль углового ускорения; R – радиус окружности.

Модуль полного ускорения

, или а = R .

Угол между полным а и нормальным аn ускорениями

Кинематическое уравнение гармонических колебаний материальной точки

х = A cos(wt + j),

где х – смещение, А – амплитуда колебаний, w – угловая или циклическая частота, j – начальная фаза. Скорость и ускорение материальной точки, совершающей гармонические колебания:

; а = – Aw2 соs(wt + j).

Сложение гармонических колебаний одного направления и одинаковой частоты:

а) амплитуда результирующего колебания

;

б) начальная фаза результирующего колебания

Траектория точки, участвующей в двух взаимно перпендикулярных колебаниях,

х = А1 соswt; у= A2 соs(wt+j):

a) у= , если разность фаз j=0;

 

– 7 –

б) у= , если разность фаз j=±p;

в) =1, если разность фаз j=±p/2

Уравнение плоской бегущей волны

y = A cosw(t-x/ )

где у смещение любой из точек среды с координатой х в момент t, скорость распространения колебаний в среде.

Связь разности фаз Dj колебаний с расстоянием между точками среды, отсчитанным в направлении распространения колебаний:

где λ – длина волны.

Импульс материальной точки массой m, движущейся со скоростью ,

p =m

Второй закон Ньютона

dp = F dt,

где F – результирующая сила, действующая на материальную точку.

Силы, рассматриваемые в механике:

а) сила упругости

F =kx,

где k – коэффициент упругости (в случае пружины – жесткость); х – абсолютная деформация;

б) сила тяжести

P = mg;

в) сила гравитационного взаимодействия

,

где G – гравитационная постоянная, m1 и m2 – массы взаимодействующих тел, r –расстояние между телами (тела рассматриваются как материальные точки). В случае гравитационного взаимодействия силу можно выразить также через

 

– 8 –

напряженность гравитационного поля:

F = m g

г) сила трения скольжения

F=fN,

где f – коэффициент трения, N – сила нормального давления.

Закон сохранения импульса

,

или для двух тел (i=2)

m1 1+m2 2= m1 u 1 + m2 u2 ,

где и – скорости тел в момент времени, принятый за начальный;

u1 и u2 – скорости тех же тел в момент времени, принятый за конечный.

Кинетическая энергия тела, движущегося поступательно,

, или

Потенциальная энергия:

а) упругодеформированной пружины

П= ½ kx2

где k – жесткость пружины, х –абсолютная деформация;

б) гравитационного взаимодействия

,

где G – гравитационная постоянная, m1 и m2 – массы взаимодействующих тел, r –расстояние между ними (тела рассматриваются как материальные точки),

в) тела, находящегося в однородном поле силы тяжести,

П = mgh

где g — ускорение свободного падения; h — высота тела над уровнем, принятым за нулевой (формула справедли­ва при условии h<<R, где R –радиус Земли).

Закон сохранения механической энергии в поле консервативных сил

E=Т+П=const.

 

– 9 –

Работа А, совершаемая результирующей силой над материальной точкой:

А= F∙∆r∙cosα

и равна изменению кинетической энергии материальной точки:

A=DT=T2 - T1

Основное уравнение динамики вращательного движения относительно неподвижной оси z

Мz =Jze,

где Мz – результирующий момент внешних сил относительно оси z, действующих на тело, e – угловое ускорение, Jz – момент инерции относительно оси вращения.

Моменты инерции некоторых тел массой т относительно оси z, проходящей через центр масс:

а) стержня длиной l относительно оси, перпендику­лярной стержню:

б) обруча (тонкостенного цилиндра) относительно оси, перпендикулярной плоскости обруча (совпадающей с осью цилиндра):

Jz=mR2,

где R – радиус обруча (цилиндра);

в) диска (сплошного цилиндра) радиусом R относительно оси, перпендику­лярной плоскости диска:

Jz= ½ mR2.

Проекция на ось z момента импульса тела, вращающегося относительно неподвижной оси z:

Lz=Jzw,

где w – угловая скорость тела.

Закон сохранения момента импульса систем тел, вращающихся вокруг неподвижной оси z:

Jzw=const,

где Jz – момент инерции системы тел относительно оси z, w – угловая скорость вращения тел системы вокруг оси z.

 

– 10 –

Кинетическая энергия тела, вращающегося вокруг неподвижной оси z:

Т = ½ Jzw2, или .

Примеры решения задач

Пример 1. Уравнение движения материальной точки вдоль оси имеет вид x=A+Bt+Ct3, где A =2 м, В =1 м/с, С= –0.5 м/с3. Найти координату х, скорость x и ускорение аx точки в момент времени t =2с.

Решение. Координату х найдем, подставив в уравнение движения числовые значения коэффициентов А, В и С и времени t:

х = (2+1×2 – 0.5 23) м = 0.

Мгновенная скорость относительно оси х есть первая производная от координаты по времени:

.

Ускорение точки найдем, взяв первую производную от скорости по времени:

.

В момент времени t = 2с

x = (1-3×0,5×22) м/с= – 5 м/с; ах = б(— 0,5)×2 м/с2= – 6 м/с2.

Пример 2. Тело вращается вокруг неподвижной оси по закону j=А+Вt+Ct2, где А=10 рад, В =20 рад/с, С= – 2 рад/с2. Найти полное ускорение точки, находя­щейся на расстоянии r =0,1 м от оси вращения, для момента времени t=4 с.

Решение. Полное ускорение а точки, движущейся по кривой линии, может быть найдено как геометрическая сумма тангенциального ускорения аt, направленного по касательной к траектории, и нормального ускорения an, направленного к центру кривизны траектории (рис. 1):

а = at +an.

Так как векторы ат и аn взаимно перпендикулярны, то модуль ускорения

 

– 11 –

. (1)

Модули тангенциального и нормального ускорения точки вращающегося тела выражаются формулами аt = er, аn = w2r,

где w – модуль угловой скорости тела; e – модуль его углового ускорения. Подставляя выражения at и ап в формулу (1), находим

. (2)

Угловую скорость w найдем, взяв первую производную угла поворота по времени: .

В момент времени t=4c модуль угловой скорости

w=[20 + 2(-2)4] рад/с = 4 рад/с.

Угловое ускорение найдем, взяв первую производную от угловой скорости по времени:

e=dw/dt = 2С = — 4 рад/с2.

Подставляя значения w, e и r в формулу (2), получаем

а = 0,1 м/с2= 1,65 м/с2.

Пример 3. Ящик массой т1 = 20 кг соскальзывает по идеально гладкому лотку длиной l=2 м на неподвижную тележку с песком и застревает в нем. Тележка с песком массой m2=80 кг может свободно (без трения) перемещаться по рельсам в горизонтальном направлении. Определить скорость и тележки с ящиком, если лоток наклонен под углом a=30° к рельсам.

Решение. Тележку и ящик можно рассматривать как систему двух неупруго взаимодействующих тел.

Но эта система не замкнута, так как на нее действуют внешние силы: силы тяжести m1g и m2g и сила реакции N2 (рис. 2). Поэтому применить закон сохранения импульса к системе ящик – тележка нельзя. Но так как проекции указанных сил на направление оси х, совпадающей с направлением рельсов, равны

нулю, то проекцию импульса системы на это направление можно считать

– 12 –

постоянной, т. е.

Р1x+ р2x = p`1x + p`2x, (1),

где р1x и р2x – проекции импульса ящика и тележки с песком в момент падения ящика на тележку; p’1x и p'2x – те же величины после падения ящика. Рассматривая тела системы как материальные точки, выразим в равенстве (1) импульсы тел через их массы и скорости, учитывая, что р2x= 0 (тележка до взаимодействия с ящиком покоилась), а также что после взаимодействия оба тела системы движутся с одной и той же скоростью и:

m1 1x = (m1+ т2) и, или m1 1 cosa= (m1 +m2) и,

где 1– модуль скорости ящика перед падением на тележку; 1x = 1cosa – проекция этой скорости на ось х.

Отсюда (2)

Модуль скорости определим из закона сохранения энергии:

m1gh = ½ m1 , где h =lsina, откуда

= .

Подставив выражение в формулу (2), получим

После вычислений найдем

м/c.

Пример 4. При выстреле из пружинного пистолета вертикально вверх пуля массой m=20 г поднялась на высоту h=5 м. Определить жесткость k пружины пистолета, если она была сжата на ∆ х=10 см. Массой пружины и силами трения пренебречь.

Решение. Рассмотрим систему пружина – пуля. Так как на тела системы действуют только консервативные силы, то для решения задачи можно применить закон сохранения энергии в механике. Согласно ему полная механическая энергия E системы в начальном состоянии (в данном случае перед выстрелом)

– 13 –

равна полной энергии Е в конечном состоянии (когда пуля поднялась на высоту h), т.е.

Е12, или Т1122, (1)

где Т1, Т2, П1 и П2 – кинетические и потенциальные энергии системы в начальном и конечном состояниях.

Так как кинетические энергии пули в начальном и конечном состояниях равны нулю, то равенство (1) примет вид

П12. (2)

Примем потенциальную энергию пули в поле сил тяготения Земли, когда пуля покоится на сжатой пружине, равной нулю, а высота подъема пули будет отсчитываться от торца сжатой пружины. Тогда энергия системы в начальном состоянии будет равна потенциальной энергии сжатой пружины, т.е. П1= ½ k(∆x) 2, а в конечном состоянии – потенциальной энергии пули на высоте h, т.е. П2=mgh.

Подставив выражения П1 и П2 в формулу (2), найдем ½ k(∆x)2 =mgh, откуда

k=2mgh/x2. (3)

Проверим, дает ли полученная формула единицу жесткости k. Для этого в правую часть формулы (3) вместо величин подставим их единицы (единицу какой-либо величины принято обозначать символом этой величины, заключенным в квадратные скобки):

(1кг×1м×с-2×1м)/1м2=(1кг×м×с-2)/1м=1Н/м.

Убедившись, что полученная единица является единицей жесткости (1Н/м), подставим в формулу (3) значения величин и произведем вычисления:

Пример 5. Шар массой m1, движущийся горизонтально с некоторой скоростью , столкнулся с неподвижным шаром массой m2. Шары абсолютно упругие, удар прямой, центральный. Какую долю e своей кинетической энергии первый шар передал второму?

– 14 –

Решение. Доля энергии, переданной первым шаром второму, выразится соотношением

(1)

где Т1 – кинетическая энергия первого шара до удара; u2 и Т2 –скорость и кинетическая энергия второго шара после удара.

Как видно из формулы (1), для определения e надо найти u2. Согласно условию задачи, импульс системы двух шаров относительно горизонтального направления не изменяется и механическая энергия шаров в другие виды не переходит. Пользуясь этим, найдем:

M1 =m1u1+m2u2; (2)

(3)

Решив совместно уравнения (2) и (3) найдем :

Подставив это выражение u2 в формулу (1) и сократив на и m1, получим

Из найденного соотношения видно, что доля переданной энергии зависит только от масс сталкивающихся шаров.

Пример 6. Через блок в виде сплошного диска, имеющего массу m=80г (рис. 4), перекинута тонкая гибкая нить, к концам которой подвешены грузы с массами m1 =100г и m2 =200г. Определить ускорение, с которым будут двигаться грузы, если их предоставить самим себе. Трением и массой нити пренебречь.

Решение. Рассмотрим силы, действующие на каждый груз и на блок в отдельности. На каждый груз действуют две силы: сила тяжести и сила упругости (сила натяжения нити). Направим ось х вертикально

– 15 –

вниз и напишем для каждого груза уравнение движения (второй закон Ньютона) в проекциях на эту ось. Для первого груза

T1 - m1g = m1a (1)

для второго груза

m2g - T 2 = m2a (2)

Под действием моментов сил T1 и T2 относительно оси z, перпендикулярной плоскости чертежа и направленной за чертеж, блок приобретает угловое ускорение e. Согласно основному уравнению динамики вращательного движения,

, (3)

где ; – момент инерции блока (сплошного диска) относительно оси z.

Согласно третьему закону Ньютона, с учетом невесомости нити , . Воспользовавшись этим, подставим в уравнение (3) вместо и выражения Т1 и Т2, получив их предварительно из уравнений (1) и (2):

(m2g-m2a)r-(m1g+m1a)r=mr2a/(2r).

После сокращения на r и перегруппировки членов найдем

(4)

Формула (4) позволяет массы m1, m2 и m выразить в граммах, как они даны в условиях задачи, а ускорение – в единицах СИ. После подстановки числовых значений в формулу (4) получим

Пример 7. Маховик в виде сплошного диска радиусом R=0,2м и массой m=50 кг раскручен до частоты вращения n1=480 мин-1 и предоставлен сам

себе. Под действием сил трения маховик остановился через t=50c. Найти момент М сил трения.

Решение. Для решения задачи воспользуемся основным уравнением динамики вращательного движения в виде

(1)

– 16 –

где Мг –момент внешних сил (в данном случае момент сил трения), действующих на маховик относительно оси z, Jz –момент инерции маховика относительно оси z; Dw – изменение угловой скорости маховика за время .

Момент инерции маховика в виде сплошного диска определяется по формуле

Изменение угловой скорости Dw=w2-w1 выразим через конечную n2 и начальную п1 частоты вращения, пользуясь соотношением w = 2pn:

Dw=w2-w1 =2pn2-2pn1=2p(n2-n1).

Подставив в формулу (1) выражения Jz и Dw, получим

Mz=pmR2(n2-n1)/Dt. (2)

Проверим, дает ли расчетная формула единицу момента силы (Н×м). Для этого в правую часть формулы вместо символов величин подставим их единицы:

Подставим в (2) числовые значения величин и произведем вычисления, учитывая, что n1 =480мин-1=480/60с-1 = 8с-1:

Знак минус показывает, что момент сил трения оказывает на маховик тормозящее действие.

Пример 8. Платформа в виде сплошного диска радиусом R=1,5 м и массой m1=180 кг вращается около вертикальной оси с частотой n=10 мин-1. В центре платформы стоит человек массой m2=60 кг. Какую линейную скорость относительно пола помещения будет иметь, человек, если он перейдет на край платформы?

Решение. Согласно условию задачи, момент внешних сил относительно оси вращения z, совпадающей с геометрической осью платформы, можно считать равным нулю. При этом условии проекция Lz момента импульса системы платформа – человек остается постоянной:

 

 

– 17 –

Lz=Jzw = const, (1)

где Jz – момент инерции платформы с человеком относительно оси z; w – угловая скорость платформы. Момент инерции системы равен сумме моментов инерции тел, входящих в состав системы, поэтому в начальном состоянии Jz=J1+J2, а в конечном состоянии .

С учетом этого равенство (1) примет вид

(2)

где значения моментов инерции J1 и J2 платформы и человека соответственно относятся к начальному состоянию системы; и – к конечному.

Момент инерции платформы относительно оси z пpи переходе человека не изменяется

Moмент инерции человека относительно той же оси будет изменяться.

Если рассматривать человека как материальную точку, то его момент инерции J2 в начальном состоянии (в центре платформы) можно считать равным нулю. В конечном состоянии (на краю платформы) момент инерции человека J2’=m2R2. Подставим в формулу (2) выражения моментов инерции, начальной угловой скорости вращения платформы с человеком (w = 2pn) и конечной угловой скорости ( = /R, где – скорость человека относительно пола) ( m1R2+0) 2pn = ( m1R2 + m2R2) /R.

После сокращения на R2 и простых преобразований находим скорость:

= 2pnRm1 /(m1+2m2).

Произведем вычисления:

Пример 9. Ракета установлена на поверхности Земли для запуска в

вертикальном направлении. При какой минимальной скорости , сообщенной ракете при запуске, она удалится от поверхности на расстояние, равное радиусу

 

– 18 –

Земли (R = 6.37×106 м)? Всеми силами, кроме силы гравитационного взаимодействия ракеты и Земли, пренебречь.

Решение: Со стороны Земли на ракету действует сила тяжести, являющаяся потенциальной силой. При неработающем двигателе под действием потенциальной силы механическая энергия ракеты изменяться не будет. Следовательно.

Т1 + П1 = Т2 + П2, (1)

где Т1, П1 и Т2, П 2 – кинетическая и потенциальная энергии ракеты после выключения двигателя в начальном (у поверхности Земли) и конечном (на расстоянии, равном радиусу Земли) состояниях. Согласно условию задачи П1=0, Т2=0, T1= m 2 / 2, П2=mgR. Следовательно, и .

Пример 10. Точка совершает гармонические колебания с частотой v=10Гц. В момент, принятый за начальный, точка имела максимальное смещение: xmax= 1 мм. Написать уравнение колебаний точки и начертить её график.

Решение. Уравнение колебаний точки можно записать в виде

x = Asin(wt + j1), (1)

где А – амплитуда колебаний; w – циклическая частота, t – время; j1 – начальная фаза.

По определению, амплитуда колебаний A = xmax. (2)

Циклическая частота w связана с частотой n соотношением

w = 2pn, (3)

Для момента времени t=0 формула (1) примет вид xmax= Asinj1, откуда начальная фаза

j1 = arcsin = arcsin 1, или j1=(2k+l)×p/2 (k= 0, 1, 2,...).

Изменение фазы на 2p не изменяет состояния колеблющейся точки, поэтому можно принять j1 = p/2. (4)

С учетом равенств (2)-(4) уравнение колебаний примет вид

– 19 –

x=Asin(2pnt+p/2), или x = Acos2pnt,

где А=1мм=10-3м,

График соответствующего гармонического колебания приведен на рис.5.

 

 

Рис.5

 

 

Пример 11. Частица массой т= 0,01 кг совершает гармонические колебания с периодом Т= 2с. Полная энергия колеблющейся частицы

 

E=0,1мДж. Определить амплитуду А колебаний и наибольшее значение силы Fmax, действующей на частицу.

Решение. Для определения амплитуды колебаний воспользуемся выражением полной энергии частицы:

Е = ½ mw2A2,

где w = 2p/Т. Отсюда амплитуда

(1)

Так как частица совершает гармонические колебания, то сила, действующая на нее, является квазиупругой и, следовательно, может быть выражена соотношением F= – kx, где k – коэффициент квазиупругой силы; х – смещение колеблющейся точки. Максимальной сила будет при максимальном смещении xmax равном амплитуде:

Fmax=kA. (2)

Коэффициент k выразим через период колебаний:

k = mw2=m4p2 /T2. (3)

Подставив выражения (1) и (3) в (2) и произведя упрощения, получим

.

– 20 –

Произведем вычисления:

Пример 12. Складываются два колебания одинакового направления, выраженные уравнениями

где A1 = 3см, A2 =2см, t1, = 1/6с, t2=1/3с, T = 2с. Построить векторную диаграмму сложения этих колебаний и написать уравнение результирующего колебания.

Решение. Для построения векторной диаграммы сложения двух колебаний одного направления надо фиксировать какой-либо момент времени. Обычно векторную диаграмму строят для момента времени t = 0. Преобразовав оба уравнения к канонической форме x=Acos(wt+j), получим

Отсюда видно, что оба складываемых гармонических колебания имеют одинаковую циклическую частоту

w = 2p/T.

Начальные фазы первого и второго колебаний соответственно равны

Произведем вычисления:

– 21 –

Изобразим векторы a1 и А2. Для этого отложим от резки длиной А1 = 3 см и А2 = 2 см под углами j1= 30° в j2=60° к оси Ох. Результирующее колебание будет происходить с той же частотой w и амплитудой А, равной

геометрической сумме амплитуд a1 и A2: A = A1 +A2 Согласно теореме косинусов,

Начальную фазу результирующего колебания можно также определить непосредственно из векторной диаграммы (рис 6):

Произведем вычисления:

или j=0,735 рад.

 

Рис.6.

Так как результирующее колебание является гармоническим, имеет ту же частоту, что и слагаемые колебания, то его можно записать в виде

x=Acos(wt+j) где A = 4.84см, w = 3,14 с-1, j-=0,735рад.

Пример 13. Плоская волна распространяется вдоль прямой со скоростью = 20 м/с. Две точки, находящиеся на этой прямой на расстояниях x1=12м и x2 = 15м от источника волн, колеблются с разностью фаз Dj=0,75p. Найти длину волны l написать уравнение волны и найти смешение указанных точек в момент t=1,2 с, если амплитуда колебаний A = 0,1 м.

Решение: Точки, находящиеся друг от друга на расстоянии, равном длине волны l, колеблются с разностью фаз, равной 2p; точки, находящиеся друг от друга на любом расстоянии Dx, коле

Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...