Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

Шарикоподшипниковые стали.

Жаропрочные стали аустенитного класса с карбидным и интерметаллидным упрочнением.

В аустенитных сталях наряду с хромом и никелем могут находиться в твердом растворе или избыточных фазах и другие легирующие элементы: аустенитизаторы (углерод, азот, марганец) и ферритизаторы (титан, ниобий, молибден, вольфрам, кремний, ванадий), улучшающие указанные служебные свойства и действующие на стабильность аустенитной структуры эквивалентно хрому и никелю. Аустенитные жаропрочные стали обладают рядом общих свойств — высокой жаропрочностью и окалиностойкостью, большой пластичностью, хорошей свариваемостью, большим коэффициентом линейного расширения. Тем не менее по сравнению с перлитными и мартенситньши сталями они менее технологичны: обработка давлением резанием этих сплавов затруднена; сварной шов обладает повышенной хрупкостью; полученное вследствие перегрева крупнозернистое строение не может быть исправлено термической обработкой, так как в этих сталях отсутствует фазовая перекристаллизация. В интервале 550—600°С эти стали часто охрупчиваются из-за выделения по границам зерна различных фаз. Аустенитные жаропрочные стали со структурой твердых растворов (например 09Х14Н16Б и 09Х14Н19В2БР), предназначенные для изготовления пароперегревателей и трубопроводов силовых установок, установок сверхвысокого давления, работают при 600—700 °С, их применяют в закаленном состоянии (закалка с 1100—1160°С в воде или на воздухе). После закалки стали приобретают умеренную прочность и высокую пластичность. При длительном нагреве при 500—700 °С возможно выделение 0-фазы, которая охрупчивает сталь. К аустенитному классу относятся высоколегированные стали, образующие пpи кристаллизации преимущественно однофазную аустенитную структуру γ -Fe c гранецентрированной кристаллической (ГЦК) рeшеткой и сохраняющие еe при охлаждении дo криогенных температур. Кoличество другой фазы - высоколегированного феррита (δ -Fe с объемноцентрированной кристаллической (ОЦК) решеткой) изменяется от О до 10 %. Они содержат 18...25 % Сг, обеспечивающего жаро- и коррозионную стойкость, а также 8...35 % Ni, стабилизирующего аустенитную структуру и повышающего жаропрочность, пластичность и технологичность сталей в широком интервале температур. Этo пoзволяет применять аустенитные стали в качествe коррозионно-стойких, жаропрочных, жаростойких, криогенных конструкционных материалов в химических, теплоэнергетических и атомных установках, гдe oни подвергаются совместному дeйствию напряжeний, высоких температур и агрессивных сред. В аустенитных сталях наряду с хромом и никелем могут находиться в твердом растворе или избыточных фазах и другие легирующие элементы: аустенитизаторы (углерод, азот, марганец) и ферритизаторы (титан, ниобий, молибден, вольфрам, кремний, ванадий), улучшающие указанные служебные свойства и действующие на стабильность аустенитной структуры эквивалентно хрому и никелю. Частицы избыточных фаз могут еще более существенно, чем растворенные атомы, влиять на пластическую деформацию во всем интервале гомологических температур. Обычно в сплавах они находятся в окружении матрицы – твердого раствора на базе основного металла – и являются эффективными барьерами для скользящих в матрице дислокаций. Дисперсные смеси можно создать двояким образом:
а) закалкой и старением;
б) методами порошковой металлургии.
Соответственно, упрочнение, достигаемое за счет выделения дисперсных включений в процессе термообработки называется дисперсионным, а за счет введения дисперсных частиц в исходную шихту, последующего формования и спекания – дисперсным.

Износостойкие стали.

Для работы в условиях изнашивания, сопровождаемого большими удельными нагрузками используется высокомарганцевая сталь 110Г13Л, имеющая в своем составе 1…1,4% углерода, 12…14 % марганца. Сталь имеет аустенитную структуру и относительно низкую твердость (200…250 НВ). В процессе работы, когда на деталь действуют высокие нагрузки, которые вызывают в материале напряжения, превосходящие предел текучести, происходит интенсивное наклепывание стали и рост ее твердости и износостойкости. При этом сталь сохраняет высокую вязкость. Благодаря этим свойствам сталь широко используется для изготовления корпусов шаровых мельниц, щек камнедробилок, крестовин рельсов, гусеничных траков, козырьков землечерпалок и т.д. Склонность к интенсивному наклепу является характерной особенностью сталей аустенитного класса. Изнашивание — это процесс постепенного разрушения поверхностных слоев трущихся деталей, который приводит к умень­шению их размеров (износу). Износостойкие стали можно разделить на три группы. В первую группу входят стали, износостойкость которых дости­гается высокой твердостью поверхности. Они подвергаются закалке и низкому отпуску или химико-термической обработке. Имеют структуру мартенсита или мартенсита с карбидными включениями. К этой группе относятся подшипниковые стали, из которых изготавливают­ся шарики и ролики подшипников качения. Они маркируются бук­вами ШХ и цифрой показывающей содержание хрома в десятых долях процента, содержат также марганец и кремний (ШХ4, ШХ15, ШХ15СГ, ШХ20СГ). Содержание углерода в них около 1 %. Ко второй группе относятся стали, износостойкость которых достигается смазывающим действием графита. Эти стали имеют в структуре графитные включения, которые в процессе изнашивания выходят на поверхность и выполняют роль сухой смазки. Эти стали имеют высокое содержание углерода (~1, %) и кремния (~1 %), что повышает способность к графитизации. Эти стали подвергаются графитизирующему отжигу, который аналогичен отжигу ковкого чугуна (см. раздел З.З.). Третью группу составляют стали износостойкость, которых дос­тигается повышенной склонностью к наклепу. Это, прежде всего, сталь 110Г13. Она имеет невысокую твердость, которая при дей­ствии давления и ударов резко повышается, за счет чего и достигает­ся износостойкость. Эта сталь подвергается закалке от 1100 °С в воде, после чего получает аустенитную структуру. Плохо обрабаты­вается резанием, поэтому применяется в литом состоянии.

Шарикоподшипниковые стали.

Шарикоподшипниковые стали характеризуются высоким содержанием углерода (около 1 %) и наличием хрома (ШХ9, ШХ15). Высокое содержание углерода и хрома после закалки обеспечивает структуру мартенсит плюс карбиды, высокую твердость, износостойкость, необходимую прокаливаемость. Дальнейшее увеличение прокаливаемости достигается дополнительным легированием марганцем, кремнием (ШХ15СГ).

Повышены требования в отношении чистоты и равномерности распределения карбидов, в противном случае может произойти выкрашивание. Стали подвергаются строгому металлургическому контролю на наличие пористости, неметаллических включений, карбидной сетки, карбидной ликвации.

Термическая обработка включает отжиг, закалку и отпуск. Отжиг проводят после ковки для снижения твердости и подготовки структуры к закалке. Температура закалки составляет 790…880 oС в зависимости от массивности деталей. Охлаждение – в масле (кольца, ролики), в водном растворе соды или соли (шарики). Отпуск стали проводят при температуре 150…170oС в течение 1…2 часов. Обеспечивается твердость 62…66 НRC.

Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...