Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

Случайные погрешности прямых измерений




Лабораторная работа № 1 - 0

Измерение физических величин и расчет погрешностей

Цель работы: научиться пользоваться микрометром, штангенциркулем, техническими весами и вычислять абсолютную и относительную погрешности прямых и косвенных измерений.

Приборы и принадлежности: микрометр, штангенциркуль, технические весы, измеряемы тела.

Погрешности измерений физических величин

Краткая теория

Различают прямые и косвенные измерения. При прямых измерениях искомое значение величины находят непосредственно из экспериментальных данных. Например: измерение длины линейкой или штангенциркулем, измерение температуры термометром и т.д. При косвенных измерениях искомое значение величины находят на основании известной зависимости между этой величиной и величинами, получаемыми прямыми измерениями. Например, определение плотности тела по измерениям его массы и геометрических размеров.

Прямые измерения

 

В зависимости от причин, их вызывающих, ошибки измерения делят на случайные, систематические и грубые. Под случайными ошибками понимают ошибки, значения которых меняются от одного измерения к другому. Величина их не может быть установлена до опыта. Их возникновение вызвано неточностью измерения (случайными ошибками экспериментатора, неточным соблюдением методики измерения и т.д.) и непостоянством самой измеряемой величины (например, диаметра цилиндра или толщины пластины).

Систематическая погрешность - это составляющая погрешности измерения, остающаяся постоянной или закономерно изменяющаяся при повторных измерениях одной и той же величины. Она может быть учтена или исключена изменением метода измерения, введением поправок к показаниям приборов, учетом систематического влияния внешних факторов и т.п.*

Грубые ошибки (промахи) являются также случайными, однако причиной грубых ошибок обычно являются неисправность измерительной техники или ошибки в работе экспериментатора. Поэтому, когда грубые ошибки значительны, они обнаруживаются без большого труда и этот результат должен быть исключен. Основным объектом изучения теории ошибок являются случайные ошибки при отсутствии систематических ошибок.

 

* Например: поправка, связанная с изменением длины измерительной линейки и тела в результате теплового расширения.

Случайные погрешности прямых измерений

 

Прямые измерения одной и той же величины дают после многократных повторений процесса измерения совокупность случайных величин, состоящую из конечного число элементов (n → ∞) а 1, а 2 ,......, a n.

Истинное значение измеряемой величины никогда неизвестно. Обозначим его через а (без индекса). Тогда истинная абсолютная погрешность любого i - того измерения равна

Δ а i = | аср - ai |. (1)

Для серии n измерений получим

Δ а1 = | асрa1 |, Δ а2 = | асрa2 |, ………………. Δ аn = | асрan |. (2)

cовокупность абсолютных погрешностей Δ а i, содержащая n - ное число элементов (n не ∞). Величины Δ а i могут быть положительными, отрицательными и равными нулю.

Следует отметить, что для совокупности абсолютных погрешно­стей выполняются два утверждения:

1) при большем числе измерений случайные погрешности одина­кового значения, но разного знака встречаются одинаково часто.

2) большие (по абсолютной величине) погрешности встречаются реже, чем малые, то есть вероятность появления погрешности уменьшается с ростом значения погрешности.

Очевидно, что обе совокупности - результаты серии прямых измерений величины а i и совокупность абсолютных погрешностей Δ а i описываются нормальным распределением Гаусса для конечного, но достаточно большого числа n измерений. Для совокупности n случайных измерений а i величины а, среднее равно истинному значению величины а. Для распределения абсолютных погрешностей это среднее равно нулю. Покажем это:

a 1 = а - Δ a 1 а 2 = а - Δ а 2 …………………. а n = а - Δ а n. (3)

Суммируя левую и правую части равенств, получим

(4)

Если обозначить среднеарифметическую величину

то (5)

При n достаточно большом

(6)

При ограниченном числе измерений теория вероятностей даёт вместо теоретических, величии Δ а i и σ конкретные «измеренные» величины абсолютной ошибки Δ а серии измерений при заданной надежности α и дисперсии σ.

Обычно в эксперименте производится небольшое число измерений (n ≤ 20) и распределение Гаусса становится несправедливым. Для оценки границ доверительного интервала в этом случае вводится новый коэффициент tα,n. Этот коэффициент был предложен в 1908 году английским математиком B.C. Госсетом, публиковавшим свои работы под псевдонимом "Стьюдент" - студент. Задавая надежность α по таблицам Стьюдента, определим коэффициент tα,n, который необходим для вычисления абсолютной погрешности Δ а серии измерений. Коэффициенты Стьюдента tα больше единицы, это значит, что доверительный интервал увеличивается в несколько раз, чтобы при малом числе измерений получить требуемую надёжность результата. Распределение Стьюдента переходит в распределение Гаусса и tα → 1 при n → ∞.

В теории погрешностей в качестве единицы ширины доверительного интервала выбрана так называемая средняя квадратичная погрешность результата измерений:

(7)

Было предложено в случае небольшого числа измерений (именно так обстоит дело в учебных лабораториях) вычислять полуширину доверительного интервала по формуле:

(8)

где ta,n - некоторое, зависящее от a и n число, называемое коэффициентом Стьюдента. Зависимость ta,n от n понятна: чем больше n, тем меньше отличается от истинного значения, и тем меньше будет доверительный интервал, точнее результат измерения, а значит меньше ta,n.

 

Поделиться:





Читайте также:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...