Дистанционные методы исследования почвенного покрова.
Стр 1 из 2Следующая ⇒ Введение Аналитическая химия- это наука об определение химического состава вещества и отчасти их химического строения. Методы аналитической химии позволяют отвечать на вопросы о том, из чего состоит вещество, какие компоненты входят в его состав. Еще важнее: каково количество этих компонентов или какова их концентрация. Эти методы часто дают возможность узнать, в какой форме данный компонент присутствует в веществе. В задачу аналитической химии входит разработка теоретических основ методов, установление границ их применимости, оценка метрологических и других характеристик, создание методик анализа различных объектов Можно выделить три функции аналитической химии как области знания: 1) Решение общих вопросов анализа 2) Разработка аналитических методов 3) Решение конкретных задач анализа Химический анализ может быть различным. Качественный и количественный, валовый и локальный, диструктивный и недиструктивный, контактный и дистанционный. Целью данного реферата является более подробное изучение дистанционного анализа, его механизма.
Дистанционное зондирование.
Дистанционное зондирование охватывает теоретические исследования, лабораторные работы, полевые наблюдения и сбор данных с борта самолетов и искусственных спутников Земли. Теоретические, лабораторные и полевые методы важны также для получения информации о Солнечной системе, и когда-нибудь их начнут использовать для изучения других планетных систем Галактики. Некоторые наиболее развитые страны регулярно запускают искусственные спутники для сканирования поверхности Земли и межпланетные космические станции для исследований дальнего космоса. В системе такого типа имеются три основных компонента: устройство для формирования изображения, среда для регистрации данных и база для проведения зондирования. В качестве простого примера такой системы можно привести фотографа-любителя (база), использующего для съемки реки 35-мм фотоаппарат (прибор-визуализатор, формирующий изображение), который заряжен высокочувствительной фотопленкой (регистрирующая среда). Фотограф находится на некотором расстоянии от реки, однако регистрирует информацию о ней и затем сохраняет ее на фотопленке.
Данные, полученные дистанционным зондированием, составляют важную часть исследований в гляциологии (имеющих отношение к характеристикам ледников и снегового покрова), в геоморфологии (формы и характеристики рельефа), в морской геологии (морфология дна морей и океанов), в геоботанике (ввиду зависимости растительности от лежащих под ней месторождений полезных ископаемых) и в археологической геологии. В астрогеологии данные дистанционного зондирования имеют первостепенное значение для изучения других планет и лун Солнечной системы, а также в сравнительной планетологии для изучения истории Земли. Однако наиболее захватывающий аспект дистанционного зондирования состоит в том, что спутники, выведенные на околоземные орбиты, впервые предоставили ученым возможность наблюдать, отслеживать и изучать нашу планету как целостную систему, включая ее динамичную атмосферу и облик суши, изменяющийся под влиянием природных факторов и деятельности человека. Изображения, получаемые со спутников, возможно, помогут найти ключ к предсказанию изменений климата, вызванных в том числе естественными и техногенными факторами. Хотя США и Россия с 1960-х годов ведут дистанционное зондирование, другие страны также вносят свой вклад. Японское и Европейское космические агентства планируют вывести на околоземные орбиты большое число спутников, предназначенных для исследования суши, морей и атмосферы Земли.
Дистанционные методы исследования почвенного покрова. Применение аэрокосмических методов в почвоведении дало ощутимый толчок развитию почвенного картографирования и мониторинга почвенного покрова. Еще в 30-е годы ХХ века, на заре применения аэрометодов для изучения природных ресурсов, отмечались значительные возможности использования дистанционных снимков при составлении детальных почвенных карт и для оценки состояния посевов. Дистанционные методы изучения почвенного покрова основаны на том, что разные по происхождению и степени вторичных изменений почвы по-разному отражают, поглощают и излучают электромагнитные волны различных зон спектра. Как следствие, каждый почвенный объект имеет свой спектрально-яркостный образ, запечатленный на аэро- и космических материалах. Применяя различные методы обработки аэрокосмических снимков, можно идентифицировать различные почвы и их отдельные характеристики. Многолетние исследования ученых показывают, что почвы в зависимости от содержания гумуса, влажности, механического состава, карбонатности, наличия солей, эродированности и других особенностей изображаются на снимках широкой гаммой тонов. Спектральная отражательная способность достаточно полно изучена, в этой связи следует сослаться на фундаментальные исследования И. И. Карманова, который измерил при помощи спектрофотометра СФ-10 коэффициенты спектрального отражения в диапазоне 400–750 нм 4 тыс. почвенных образцов. На черно-белых снимках почвы имеют серый, темно-серый тон, тогда как растительность – светлый, светло-серый. Исключение составляют солончаковые, эродированные и песчаные почвы. В ближней инфракрасной зоне (0,75–1,3 мкм) для почв отмечается плавный подъем кривых. Характер и уровень спектральных кривых позволяют довольно надежно определять генетические разности почв. Для изучения почв при многозональной съемке используют различия коэффициента спектральной яркости почв в разных диапазонах спектра. При проведении дистанционных почвенных исследований очень часто отмечается возможность идентификации засоленных и солонцеватых почв. Во многих случаях это касается участков естественного засоления, а также локального засоления, обусловленного ирригационными мероприятиями. Практически отсутствуют работы по дистанционной оценке техногенного засоления в связи с разработкой месторождений нефти и газа. Техногенное засоление почв на нефтяных месторождениях явление довольно частое, оно вызвано изливающимися на поверхность техногенными потоками, отличающимися высокой минерализацией вод с преобладанием в солевом комплексе хлорида натрия. Засоление обусловливает резкое изменение свойств почв и вызывает обеднение или перерождение растительного покрова. В первую очередь, это касается солонцеватых почв. Почвенные коллоиды, насыщенные натрием, подвергаются пептизации, почвенные агрегаты распадаются, и физические свойства почвы меняются. Наиболее очевидны изменения плотности, агрегатного и механического состава почв. Не менее существенны и трансформации органической составляющей почв. Прежде всего, это выражается в перераспределении исходных запасов почвенного органического углерода по генетическим горизонтам из-за усиления потечности гумуса при образовании гуматов и фульватов натрия. Из сказанного следует, что техногенное засоление резко меняет различные характеристики почв и, как следствие, спектрально-яркостный образ засоленных и солонцеватых почв на нефтепромыслах характеризуется ощутимым своеобразием. В то же время для их идентификации и картирования может быть использован довольно богатый опыт изучения природных засоленных территорий и почвенных массивов, подвергшихся засолению в результате ирригационных мероприятий. Идея о возможности оценки засоления орошаемых почв по дистанционным данным зародилась в 60-е годы ХХ ст., но первые данные оказались весьма скудными. В дальнейшем на основании исследований аридных, в основном хлопкосеющих, областей были получены более детальные результаты, появились представления о том, какую информацию о засолении почв можно получить по снимкам и каковы дешифровочные признаки почв разного типа засоления. С необходимостью выявлять засоленные и солонцеватые почвенные разности приходится сталкиваться при крупномасштабном почвенном картировании. Отмечается, что такие разности хорошо фиксируются на аэро- и космических снимках благодаря изменению тона (цвета) и рисунка изображения. По данным Ю. П. Киенко и Ю. Г. Кельнера космические снимки с разрешением более 10 м передают 100% информации о формах элементарных почвенных структур, для фотоснимков с более низким разрешением (20–30 м) изображаются не более 80% почвенных ареалов. Прикладное дешифрирование космических снимков предполагает работу с сериями снимков. Рекомендуется использовать снимки одной и той же местности, различающиеся яркостью изображения идентичных точек в зависимости от свойств и состояния объектов или условий и параметров съемки. Наиболее часто применяемые из них: снимки в разных спектральных диапазонах, многозональные снимки с расчленением по длинам волн, разновременные снимки, снимки при разных условиях освещения, разном направлении съемки, снимки разных масштабов, разрешения. Одним из эффективных методических приемов является последовательное дешифрирование, которое применяется в тех случаях, когда на разных зональных снимках отображаются различные объекты. Например, солончаки и степень засоления хорошо фиксируются на снимках в голубой зоне, заболоченные участки и степень увлажнения – на снимках в ближней инфракрасной зоне. Последовательное дешифрирование предусматривает анализ отдельных временных срезов с составлением разновременных схем дешифрирования.
Задача выявления засоляющихся почв является одной из наиболее важных в процессе дистанционных почвенно-мелиоративных исследованиях. При наблюдении за солевым режимом орошаемых почв оценивают степень и тип засоления почв, направленность изменения засоленности пород, запасы солей, причины засоления. Засоление почв обнаруживается дистанционными методами как при непосредственном появлении солей на поверхности почв, так и изменении отражательной способности сельскохозяйственных культур вследствие выпадения отдельных растений, их угнетения и появления галофитных сорняков. За счет указанных явлений изменяются тон и рисунок изображения засоленных почв. Подобные исследования широко проводились на орошаемых массивах в бассейнах Амударьи и Сырдарьи [ Большой опыт дистанционной оценки почвенных свойств получен при составлении государственной почвенной карты СССР с использованием космической информации []. При этом применялись многозональные снимки, составители пользовались преимущественно двумя каналами: 0,6–0,7 (красная зона) и 0,8–1,1 мкм (инфракрасная зона). Выявление засоленных почв производилось при составлении мелкомасштабной почвенной карты Узбекистана Во время работы над картой использовались черно-белые космические снимки разных масштабов. Для солончаков установлены пятнистая и мелкопятнистая структура фотоизображения и от светло-серого до темно-серого тон. Специализированная карта «Засоления почв» составлена для Памиро-Алая Как указывают авторы, на космических снимках солончаки и сильнозасоленные почвы дешифрировались довольно уверенно по фототону и структуре фотоизображения. На космических снимках также дешифрируются небольшие пятна слабо- и среднезасоленных почв, развитых среди незасоленных сероземно-луговых почв, эти почвы на снимках имеют пятнистое изображение с расплывчатыми границами светло-серого и серого фототонов. Процессы засоления оценивались дистанционными средствами в Южном Ставрополье. Природное засоление в этом регионе проявляется преимущественно в почвах, формирующихся на майкопских глинах в условиях повышенного гидроморфизма. Преобладающие слабо- и среднесолончаковатые почвы имеют на аэрофотоснимках серый тон, фоновый для подобных территорий. На этом фоне хорошо выделяются мелкие очень светлые пятна сильнозасоленных почв. Дешифрирование засоления орошаемых почв аридных территорий проводится по состоянию хлопчатника. Дешифрирование по открытой поверхности почвы в этих условиях невозможно, поскольку коэффициенты спектральной яркости незасоленных аридных почв и засоленных почв очень близки. Основными дешифровочными признаками засоления являются тон и рисунок фотоизображения. За основу взяты две контрастные градации тона: темный – для участков с хорошим состоянием хлопчатника и светлый – для поверхности, лишенной растительности. Процент светлых пятен в пределах поля или контура и их размер позволили установить и на основе наземных данных статистически обосновать связь фотоизображения со степенью засоления в метровом слое почв. Этот принцип позволил выделить при визуальном дешифрировании на снимках крупного масштаба четыре градации почв по засолению, на снимках среднего масштаба – три, на космических снимках – две. Изучение явлений вторичного засоления в зоне влияния инфильтрационных вод проводилось по материалам аэрофотосъемки на Право-Егорлыкской оросительной системе в Ставропольском крае (Россия). Суть методики слияния данных состоит в использовании комплексного подхода при получении, обработке и интерпретации аэрокосмической информации. К методике слияния данных обращаются тогда, когда изучаемая методами дистанционного зондирования система является слабоструктурированной и достаточно изменчивой во времени. Безусловно, информация о почвенном засолении относится к этой категории, поэтому наиболее интересные работы по засолению почв, опубликованы в последнее время. В 2003 г. опубликован довольно объемный обзор, посвященный современному состоянию методов дистанционного зондирования как инструмента для оценки солености почв. В этой статье рассматриваются различные датчики (в т.ч. аэрофотографические, спутниковые и самолетные мультиспектральные, микроволновые, видео, аэрогеофизические, гиперспектральные, электромагнитные индуктометры) и подходы, использованные для дистанционной индикации и картирования засоленных площадей. Отмечается важная роль обработки исходных данных дистанционного зондирования, среди наиболее эффективных для оценки засоленных почв обсуждаются такие методики, как спектральное разделение, классификация по максимальному правдоподобию, классификация на основе нечетких множеств, совмещение диапазонов, анализ главных компонент, корреляционные уравнения. Наконец, статья показывает моделирование временной и пространственной изменчивости солености с использованием комбинированных подходов с привлечением методик слияния и разделения данных. Масштабные экспериментальные работы по использованию дистанционного зондирования для картирования почвенного засоления проведены в 1998-99 г.г. в провинции Альберта (Канада). В рамках этих работ были изучены два ключевых участка, один с естественным засолением, второй – засоленный вследствие искусственного орошения. Почвенная соленость контролировалась с помощью наземного электромагнитного индуктометра солености в слое почвы от 0 до 60 см. Дистанционные исследования проводились с использованием мультиспектрального датчика, установленного на самолете. В первый год исследований были получены снимки с разрешением 3-4 м, во второй – 0,5 м. Использованы четыре диапазона электромагнитных волн: голубой (0,45–0,52 μм), зеленый (0,52–0,60 μм), красный, так или иначе, используют элементы Data Fusion Technology. Процедуры «ERDAS Image 8.4» для анализа космических снимков и классификации земной поверхности Крымского п-ова использовали В. И. Придатко и Ю. М. Штепа. На основе дешифрирования четырех снимков «Landsat-7 ETM», полученных в 1999 и 2000 годах, разработаны классификации земной поверхности Крыма, в том числе выделены засоленные территории. Применение метода нечетких множеств (fuzzy modelling) для повышения эффективности выделения типов засоленных почв по данным дистанционного зондирования рассматривает Д. А. Матернайт. Ею изучались снимки Landsat TM, полученные над засоленной площадью Боливии. Моделирование с использованием нечетких множеств позволило повысить точность результатов, отделение почв с хлорид-сульфатным типом засоления от сульфат-хлоридного достигнуто в 44% случаев. Более высокая точность получена при разделении сульфат-хлоридных солончаков и солонцеватых почв, наиболее информативными оказались данные в ближнем и тепловом инфракрасных диапазонах спектра. Для картирования засоленных почв предложено использовать интегрированные разновременные классификации данных дистанционного зондирования, физические и химические свойства почв и атрибуты форм земли]. Три экспертные системы, использующие нечеткие множества и лингвистические правила нечетких множеств для формализации экспетных знаний об актуальной возможности изменений, обработаны и внесены в ГИС. Системы используют подход семантического импорта не нечетких множеств, что позволяет интегрировать разнородные данные в базы данных по правилам нечетких множеств. Выход системы – три карты, представляющие «правдоподобные изменения», «природу изменений» и «магнитуду (размеры) изменений». Эти карты затем комбинируются с ландшафтной информацией, представленной на различных слоях ГИС. В другой работе Д. А. Матернайт показано, что растительность, толерантная к солям, как индикатор для отделения солончаков и солонцеватых почв от неизмененных почв не всегда применима в случае использования оптических датчиков Landstat TM или Spot. Более эффективны для этой цели радиолокационные материалы. Метод нечетких множеств применен для классификации радиолокационных спутниковых образов (JERS-1). Полученный опыт свидетельствует, что классификация радиолокационных данных обеспечивает надежное определение (общая точность равна 81%) площадей, деградированных из-за процессов засоления и осолонцевания. Основные проблемы появляются вследствие различной шероховатости почв, определенные классы поверхностей по шероховатости с засоленными и солонцеватыми почвами ошибочно относятся к неизмененным. Методики дистанционного зондирования, использующие в качестве показателя степени засоления почв тип и состояние растительности, были применены для обеспечения широкой пространственной оценки солености и подтопления в Восточном и Западном графствах Укаро (Австралия). В бассейне рек Муррей и Дарлинг (Австралия) производились исследования спектральных особенностей засоленных почв на участках орошения. Исследования с целью оценки влияния солености почв на урожай путем применения ГИС и технологий дистанционного зондирования предприняты в юго-восточной части долины Харран (Турция), где довольно широко распространены засоленные почвы. Комплексная интерпретация аэрофотоматериалов использовалась для выделения в различной степени засоленных пахотных земель и пустошей в провинции Шаньси (Китай) по данным авторов была достигнута воспроизводимость 90% Для оценки степени засоления почв и урбанизации сельскохозяйственных территорий в дельте Нила и в прилежащей к ней районах обрабатывались снимки Landsat TM, датированные 1984-93 годами Результаты обработки разновременных снимков показали, что для 3,74% сельскохозяйственных земель в дельте продуктивность почв уменьшается. Исследование возможности установления солености гипсоносных почв, используя данные Landsat TM, предпринято в провинции Исмаилия в Египте]. Используя классификацию контролируемых образов, отделены гипсоносные почвы от засоленных почв и от других почв. Наиболее эффективно для разделения гипсоносных и засоленных почв использование теплового диапазона. Применение материалов космических съемок позволили развить новое направление в исследовании засоления почв. Как показывает обзор, исследования проводятся во многих странах, независимо от того, являются они владельцами космических аппаратов или нет. Наиболее широко для исследований применяются космические снимки спутников Landsat, достоинством которых является наличие многих каналов съемки, доступность, разрешающая способность, хорошая привязка и коррекция. Проблема дистанционной индикации почвенного засоления стоит остро, особенно в странах с засушливым климатом (Австралия, Индия, Турция, юг России и др.). Почти всегда использование для оценки природного и ирригационного засоления почв дистанционных методов приносит хорошие плоды. Во многих случаях исследователи опираются не столько на изучение почвенных характеристик, сколько на степень деградации растительности на солончаках и солонцах. Для выявления и оценки техногенно засоленных почв также можно использовать изменение растительного покрова. Но для них характерны и такие отличительные черты, как своеобразная конфигурация ореолов и резкое отличие от неизмененных почв по многим характеристикам, в том числе и в верхнем приповерхностном слое. Современные приемы обработки исходных космических снимков с соответствующим разрешением позволяют достаточно уверенно идентифицировать такие эффекты. Поскольку техногенное засоление почв всегда связано с наличием технологического объекта, то зону поиска участков загрязнения можно существенно сократить, имея точную карту объектов – потенциальных загрязнителей почв. Такая карта создается с использованием ГИС-технологий, а наличие космических снимков среднего и высокого разрешения с космических аппаратов (КА) Landsat, SPOT, Ikonas, QuickBird в комплексе со средствами обработки, заложенными в современных программах, например ERDAS Imagine, позволяет решить задачу оценки техногенного засоления почв на нефтегазовых месторождениях.
Воспользуйтесь поиском по сайту: ©2015 - 2025 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...
|