Движение во времени. НАПРАВЛЕНИЕ
Движение во времени Отправной пункт для исследования природы движения во времени – осознание статуса единицы скорости как естественного исходного уровня, нулевого уровня физической активности. В повседневной жизни мы имеем дело со скоростями, измеренными от какого-то случайного нуля, и все потому, что они не являются первичными величинами; они просто разницы в скоростях. Например, если предел скорости составляет 70 км в час, это не значит, что автомобилю запрещено двигаться с любой большей скоростью. Это значит, что разница между скоростью автомобиля и скоростью части поверхности Земли, по которой движется автомобиль, не должна превышать 70 км в час. Автомобиль и поверхность Земли вместе движутся с более высокими скоростями в нескольких разных направлениях, но в обычных целях нас это не волнует. Мы имеем дело лишь с разницей, а начало отсчета, из которого делается измерение, не обладает никаким особым значением. В современной практике мы приписываем большую степень изменения в положении автомобиля относительно локальной системы отсчета большей скорости, причем эта величина измеряется от нуля. С таким же успехом мы могли бы измерять скорость от какого-то случайного не нулевого уровня, как поступаем в традиционных системах измерения температуры. Мы могли бы измерять даже обратную скорость от некоего выбранного исходного уровня и приписывать большую скорость изменения положения меньшей “обратной скорости”. Однако, имея дело с базовыми явлениями вселенной, мы имеем дело с абсолютными скоростями, а не просто с различиями в скоростях. И для этой цели необходимо осознать, что исходный уровень естественной системы отсчета – единица, а не нуль.
Поскольку согласно постулатам, определяющим Вселенную Движения, движение существует только в единицах, а каждая единица движения состоит из одной единицы пространства в сопряжении с одной единицей времени, с точки зрения индивидуальных единиц все движение происходит с единицей скорости. Однако скорость может быть либо положительной, либо отрицательной. И посредством ряда инверсий последовательностей, либо времени, либо пространства, в то время как второй компонент продолжает ненаправленное движение, создается эффективная скалярная скорость 1/n или n/1. В главе 4 мы рассматривали случай, когда векторное направление движения переворачивалось в конце каждой единицы. Результат – вибрационное движение. В качестве альтернативы, векторное направление может переворачиваться в унисон со скалярным направлением. В этом случае в контексте фиксированной системы отсчета пространство (или время) проходит одну единицу, а время (или пространство) проходит n единиц. Результат – поступательное движение со скоростью 1/n (или n/1) единиц. В обоих случаях скалярная ситуация одинакова. Упорядоченный паттерн переворотов выливается в отношение пространство-время, равное 1/n или n/1. В примере, приведенном в таблице в главе 4, где отношение пространство-время равно 1/3, имеется движение вовнутрь (одна единица), за ним следует движение вовне (одна единица) и еще одно движение вовнутрь (одна единица). В последовательности из трех единиц результирующее движение вовнутрь равно одной единице. Далее следует непрерывное повторение подобных 3-единичных последовательностей. Как указывается в нижеприведенной таблице, скалярное направление последней единицы каждой последовательности – вовнутрь. (Последовательность, включающая четное число, меняется в пределах n – 1 и n + 1. Например, вместо двух 4-единичных последовательностей, в которых каждая последняя единица каждой последовательности была бы движением вовне, имеется 3-единичная последовательность и 5-единичная последовательность. ) Скалярное направление первой единицы каждой новой последовательности – движение вовнутрь. Следовательно, в точке, где начинается новая последовательность, переворота скалярного направления не происходит. В случае вибрации векторное направление продолжает регулярную череду переворотов даже в тех точках, в которых скалярное направление не переворачивается. Но в ситуации поступательного движения перевороты векторного направления совпадают с переворотами скалярного направления. Отсюда, траектория вибрации остается в фиксированном положении в измерении колебания, в то время как траектория поступательного движения движется вперед в скалярном отношении пространство-время, равном 1/n или n/1. Это и есть паттерн, которому следуют любые скалярные (будет обсуждаться позже) и все векторные движения – движения материальных единиц и совокупностей.
НАПРАВЛЕНИЕ
Когда движение внутри единицы достигает конца единицы, оно либо переворачивается, либо нет. Промежуточной возможности не существует. Оно следует тому, что представляется непрерывным ненаправленным движением со скоростью 1/n, по сути, прерывистому движению, в котором пространство движется с обычной скоростью – одна единица пространства за единицу времени – для отношения 1/n общего числа единиц пространства. В оставшийся период движение внутри единицы обладает конечным результирующим нулем в контексте фиксированной системы отсчета. Если скорость равна 1/n – одной единице пространства за n единиц времени – пространство проходит лишь одну единицу вместо n единиц, которые оно проходило бы, двигаясь не направленно. Следовательно, результат движения со скоростью 1/n вызывает изменение пространственного положения относительно положения, которое достигалось бы при нормальной скорости последовательности. Тогда, движение со скоростью меньше единицы является движением в пространстве. Это хорошо известный факт. Но вследствие некритичного принятия авторитетного мнения Эйнштейна, что скорости, превышающие скорость света, невозможны, и неспособности понять обратную связь между пространством и временем, не осознано то, что вселенная такого вида движения и является физической реальностью. Когда скорость составляет n/1, происходит переворот временного компонента, что выражается в изменении положения во времени относительно того, которое достигалось бы при нормальной скорости последовательности времени - прошедшего времени, зарегистрированного часами. Следовательно, движение со скоростью больше единицы является движением во времени.
Существование движения во времени – одно из самых значимых следствий статуса физической Вселенной как Вселенной Движения. Традиционная физическая наука, распознающая лишь движение в пространстве, способна хорошо справляться лишь с теми явлениями, которые включают только движение в пространстве. Она не способна пролить свет на физические основы - задача, для которой существенно понимание роли времени. Поэтому при движении в те области, где важным фактором является движение во времени, она сталкивается с растущим числом проблем, как в наблюдениях, так и в экспериментах. Более того, количество и масштаб проблем сильно возрастали при использовании нулевой скорости, а не скорости, равной единице, как начального уровня для целей измерения. В то время как движение со скоростями 1/n (скорости меньше единицы), если рассматривается относительно естественной (движущейся) системы отсчета, представляет собой движение только в пространстве, оно является движением и в пространстве, и во времени, если рассматривается в традиционных системах, пользующихся нулевым уровнем отсчета. Следует понять, что движения, которые мы обсуждаем сейчас, являются независимыми движениями (физическими феноменами), а не выдуманным движением, введенным использованием стационарной системы отсчета. Здесь термин “последовательность” используется для подчеркивания природы непрерывности этих движений и их пространственных и временных аспектов. В одной единице периодического движения (последовательности) с обычной единицей скорости, если средняя скорость равна 1/n, пространственный компонент движения, являющийся неотъемлемым свойством движения, не зависящего от последовательности естественной системы отсчета, сопровождается аналогичной последовательностью во времени, которая тоже не зависит от последовательности системы отсчета. Именно этот аспект времени измеряется приборами. Следовательно, каждая единица приборного времени при условиях независимого движения со скоростью 1/n включает изменение положения в трехмерном времени, равного 1/n единиц.
Как выяснилось в предыдущем обсуждении этой темы в главе 6, величина n на скоростях нашего повседневного опыта настолько велика, что величиной 1/n можно пренебречь. А приборное время может считаться эквивалентом общего времени, вовлеченного в движение. Однако на высоких скоростях величина 1/n становится значимой, и общее время, вовлеченное в движение на высоких скоростях, включает дополнительный компонент. Это и есть непризнанный временной компонент, отвечающий за расхождения, с которыми не может справиться современная наука даже посредством выдуманных факторов. В случае двух фотонов, рассматривавшемся в главе 7, величина 1/n является отношением 1/1 для обоих фотонов. Единица движения фотона Х включает одну единицу пространства и одну единицу времени. Время, входящее в эту единицу движения (время 0Х) можно измерить с помощью регистрации на часах, которые являются временным эквивалентом линейки. Теми же часами можно воспользоваться и для измерения величины времени, вовлеченного в движение фотона Y (времени 0Y). Но использование одной и той же временной “линейки” не означает, что временной интервал 0Y, в котором движется Y, является тем же интервалом, в котором движется Х, интервалом 0Х. Их объединяет лишь применение одной и той же линейки для измерения пространств, пройденных Y и Х. Истина в следующем: в конце одной единицы времени, входящей в последовательность естественной системы отсчета (измеряемой часами), Х и Y разделяют две единицы общего времени (время 0Х и время 0Y) и две единицы пространства (расстояние). Относительная скорость – это увеличение разделения в пространстве, две единицы, деленное на увеличение разделения во времени, две единицы, или 2/2 = 1.
Если объект с более низкой скоростью v заменяется одним из фотонов так, что разделение в пространстве в конце одной единицы часового времени равно 1 + v, разделение во времени тоже равно 1 + v, а относительная скорость равна (1 + v)/ (1 + v) = 1. Любой процесс, который измеряет истинную скорость, а не пространство, пройденное за данный интервал стандартного приборного времени (время последовательности естественной системы отсчета), приходит к единству со скоростью света, безотносительно системы отсчета. Когда в уравнение движения вводятся правильные величины времени, необходимость в выдуманных факторах отпадает. Тогда измеренные различия координат и измеренная постоянная скорость света полностью совместимы, и нет необходимости лишать пространственные координаты их “метрического значения”. К сожалению, в настоящее время средства измерения общего времени недоступны, за исключением особых конкретных применений. Конечно, в будущем какой-то подходящий способ измерения будет найден, а пока понадобится продолжать пользоваться коррекцией к регистрации часов в тех областях, в которых это уместно. В таких обстоятельствах мы можем считать, что пользуемся корректирующими факторами вместо выдуманных. Больше нет необъяснимого расхождения, нуждающегося в выдумках. Сейчас мы обнаруживаем, что наши вычисления включают компонент времени, который невозможно измерить. В случае измерений, которые мы не можем выполнять, в определенных конкретных обстоятельствах, мы можем воспользоваться корректирующими факторами, компенсирующими разницу между приборным и общим временем. Исчерпывающее объяснение выведения корректирующих факторов - уравнений Лоренца - доступно в научной литературе и не будет повторяться. Это соответствует общей политике, которой будет следовать эта работа. Как объяснялось в главе 1, большинство существующих физических теорий построено на эмпирических основах. СТОВ построена противоположным образом. В то время как теории, основанные на эмпирике, начинают с наблюдаемых деталей и работают над общими принципами, СТОВ начинает с ряда общих постулатов и работает с деталями. В какой-то момент каждое из ответвлений теоретического развития будет встречаться с соответствующим элементом эмпирической теории. Если это происходит в представляемой работе, и выявляется согласование, как в случае с уравнениями Лоренца, задача представления выполнена. Дублирование материала, уже доступного в деталях, было бы бессмысленно. По мере развития теории большинство других прочно установленных отношений физической науки аналогично вписывается в новую теоретическую систему с небольшими модификациями или без таковых. Это происходит не потому, что весомость наблюдаемых свидетельств подтверждает эти отношения, не потому, что кто-то их одобрил, и не потому, что они изначально были одобрены научным миром. Это происходит потому, что выводы, выраженные этими отношениями, совпадают с выводами, полученными в результате развития новой теоретической системы. Когда такие отношения включаются в систему, они, естественно, становятся частью системы и могут использоваться так же, как и любая другая часть теоретической структуры. Существование скоростей больше единицы (скорость света), скоростей, приводящих к изменению положения во времени, конфликтует с нынешним научным мнением, принимающим вывод Эйнштейна, что скорость света - это абсолютный предел, который не может быть превышен. Наше исследование показывает: в тот момент, когда Эйнштейну пришлось делать случайный выбор между альтернативами, он совершил неверный выбор, и ограничение скорости возникло в результате этой ошибки. По сути, предела не существует. Подобно специальной теории относительности, теория, из которой выводится ограничение скорости, - это попытка дать объяснение эмпирическому наблюдению. Согласно второму закону движения Ньютона, который может выражаться как a = F/m, если к постоянной массе прикладывается сила, она создает ускорение, которое тоже постоянно. Но серии экспериментов показали: если к частице, такой как электрон, прикладывается предположительно постоянная электрическая сила, и при этом создается очень высокая скорость, ускорение не остается постоянным, а уменьшается в степени, указывающей, что она достигла бы нуля при скорости света. Согласно экспериментальным результатам, истинное отношение не является законом Ньютона, a = F/m, а a = - √ 1 – (v/c) 2 F/m. В системе условных обозначений этой работы, пользующейся скорее естественными, чем случайными единицами измерений, скорость света, обозначаемая с в современной практике, равна единице, а переменная скорость (или быстрота) v выражается в терминах этой естественной единицы. На этой основе, эмпирически выведенное уравнение становится a = F/m. В экспериментальных данных ничего не говорится о значении термина 1 – v2 в этом выражении; уменьшается ли сила при высоких скоростях, увеличивается ли масса, или термин “быстрота” представляет собой влияние некоего фактора, не относящегося ни к силе, ни к массе. Эйнштейн, по-видимому, рассматривал только первые две альтернативы. И хотя восстановить паттерн его мышления трудно, кажется, он полагал, что действующая сила уменьшалась бы, только если уменьшалась бы величина электрических зарядов, созданных этой силой. Поскольку все электрические заряды одинаковы (насколько мы знаем), а первичные концентрации массы крайне переменчивы, в качестве альтернативы он выбрал переменную массу. В целях своей теории он предположил, что масса увеличивается со скоростью, указанной экспериментами. На этом основании при скорости света масса становится бесконечной. Результаты, полученные из СТОВ, показывают, что Эйнштейн ошибся. Новая теоретически полученная информация (которая будет обсуждаться позже) раскрывает, что электрические заряды не могут создавать скорость больше единицы, и уменьшение ускорения на высоких скоростях, на самом деле, возникает за счет уменьшения силы, создаваемой зарядами, а не изменением величины либо массы, либо заряда. Как объяснялось раньше, сила – это просто концепция, с помощью которой мы визуализируем результат противоположно направленных движений, как конфликт тенденций создавать движение, а не конфликт самых движений. Такой метод подхода помогает математической обработке темы и, безусловно, удобен. Но когда бы физическая ситуация ни представлялась некоей выведенной концепцией такого вида, всегда существует вероятность, что соответствие может быть не полным, и что результаты, полученные с помощью обозначенной концепции, могут быть ошибочными. Именно это и произошло в случае, который мы сейчас рассматриваем. Если допущение, что сила, создающая ускорение массы, остается постоянной при отсутствии любых внешних влияний, рассматривается лишь с точки зрения концепции силы, это кажется абсолютно логичным. Представляется разумным, что тенденция создавать движение оставалась бы постоянной, пока не подверглась бы некоему виду изменения. Но когда мы рассматриваем ситуацию в ее истинном свете - как комбинацию движений, а не средство искусственного представления с помощью концепции силы - сразу же очевидно, что такой вещи, как постоянная сила, не существует. Любая сила должна уменьшаться, когда достигается скорость движения, из которого она возникает. Например, последовательность естественной системы отсчета – это движение с единицей скорости. Если сила (то есть, влияние) последовательности прикладывается для преодоления сопротивления движению (инерция массы), это сразу же сведет скорость массы к скорости самой последовательности – единице скорости. Но тенденция добавлять скорость объекту, уже движущемуся на высокой скорости, не эквивалентна тенденции передачи скорости телу, пребывающему в покое. При ограничивающем условии, когда объект уже движется с единицей скорости, сила за счет последовательности системы отсчета вообще не действует, а ее величина равна нулю. Таким образом, полное действие любой силы достигается только тогда, когда сила действует на тело, пребывающее в покое, а действующий компонент, приложенный к движущемуся объекту, является функцией разницы между скоростью объекта и скоростью, проявляющейся как сила. Особая форма математической функции, а не просто 1 – v, связанная с некоторыми свойствам сложных движений, будет обсуждаться позже. Обычные земные скорости настолько малы, что соответствующим ослаблением действующей силы можно пренебречь, и на этих скоростях силы можно считать постоянными. Когда скорость движущегося объекта увеличивается, действующая сила уменьшается, приближаясь к нулю, если объект движется со скоростью, соответствующей приложенной силе – единице в случае последовательности естественной системы отсчета. Как мы обнаружим на более поздней стадии рассмотрения, электрический заряд является следствием движения с единицей скорости, как и гравитационное движение, и последовательность естественной системы отсчета. И он тоже оказывает нулевое силовое воздействие на объект, движущийся с единицей скорости. В качестве аналогии можно рассмотреть контейнер, наполненный водой, который начинает быстро вращаться. Движение стенок контейнера воздействует силой на воду, стремящуюся придать жидкости вращательное движение. Под влиянием этой силы вода постепенно приобретает скорость вращения. Но когда скорость приближается к скорости контейнера, эффект “постоянной силы” уменьшается, и скорость контейнера становится пределом, превышать который скорость воды не может. Можно сказать, что сила исчезает. Но тот факт, что мы не можем еще больше ускорить жидкость этим способом, не мешает придать ей еще большую скорость с помощью другого способа. Ограничение касается лишь потенциала процесса, а не скорости, с которой вода может вращаться. И в СТОВ, и в теории Эйнштейна математика уравнения движения, применяемая к явлению ускорения, остается одинаковой. Математически, не имеет значения, увеличивается ли масса на данную величину или действующая сила уменьшается на такую же величину. Действие на наблюдаемую величину – ускорение - идентично. Изобилие экспериментальных свидетельств, демонстрирующих правомочность этой математики, подтверждает результаты, выведенные из СТОВ точно в такой же степени, как они подтверждают теорию Эйнштейна. В любом случае эти свидетельства демонстрируют, что теория математически корректна. Но математическая правомочность – лишь одно из требований, которым должна удовлетворять теория, чтобы быть корректным представлением физических фактов. Она должна быть правомочна и концептуально; то есть, значение, придаваемое математическим терминам и отношениям должно быть корректным. Одним из значимых аспектов теории Эйнштейна в связи с ускорением на высоких скоростях является то, что она ничего не объясняет; она просто выдвигает допущения. Эйнштейн предлагает нам авторитетное утверждение, что выражение для скорости включает увеличение массы, без любой попытки объяснения, почему масса увеличивается со скоростью; почему гипотетическое приращение массы не меняет структуру движущегося атома или частицы, как это делает любое другое приращение массы; почему термин “скорость” обладает именно такой конкретной математической формой; или почему вообще должно существовать какое-то ограничение скорости. Конечно, отсутствие концептуальной основы - это общая характеристика базовых теорий современной физики, по выражению Эйнштейна “свободных изобретений человеческого ума”. Теория увеличения массы не является исключением. Но случайный характер теории резко контрастирует с полным объяснением, представляемым СТОВ. Новая система теории предлагает простые и логические ответы на все вышеприведенные вопросы и возникает в связи с объяснением, которое предлагает. Более того, ни одно из объяснений не выдумывается специально для этой цели. Все полностью выводится из изучения допущений о природе пространства и времени, составляющих базовые допущения новой теоретической системы. И СТОВ, и теория Эйнштейна признают какое-то ограничение при единице скорости. Эйнштейн утверждает, что это предел величины скорости, поскольку на основе его теории, скорости, равной единице, масса достигает бесконечности, а ускорить бесконечную массу невозможно. С другой стороны, СТОВ утверждает, что ограничение обуславливается потенциалом процесса. Скорость выше единицы не может создаваться электромагнитными средствами. Это не мешает ускорению до более высоких скоростей с помощью других процессов, таких как внезапное высвобождение больших количеств энергии при взрывах. Согласно точке зрения новой теории, определенного предела на величины скорости не существует. Бесспорно, общая обратная взаимообусловленность пространства и времени требует, чтобы во Вселенной в целом скорости больше единицы имелись в таком же изобилии и охватывали такую же широкую область, что и скорости меньше единицы. Кажущееся преобладание низкоскоростных явлений – просто результат наблюдения вселенной из положения, находящегося на низкоскоростной стороне от нейтральной оси. Одной из причин, почему допущение Эйнштейна, касающееся существования ограничения скорости, было принято с такой готовностью, является сомнительное отсутствие любого наблюдаемого свидетельства существования скоростей больше скорости света. Однако новая система теории указывает, что, на самом деле, это не отсутствие свидетельства. Трудность в том, что сейчас научное сообщество придерживается ошибочного мнения относительно природы изменения положения, вызываемого таким движением. Мы наблюдаем, что движение со скоростью меньше скорости света создает изменение положения в пространстве, и скорость изменения меняется в зависимости от скорости (или мгновенной скорости, если движение не линейно). Сейчас принимается на веру, что скорость больше скорости света приводила бы к еще большей скорости изменения положения в пространстве. И отсутствие любого ярко выраженного свидетельства о таких высоких скоростях изменения положения трактуется как доказательство существования предела скорости. Во Вселенной Движения приращение скорости выше единицы (скорости света) не создает изменения положения в пространстве. В такой Вселенной между пространством и временем существует полная симметрия. И поскольку единица скорости является нейтральным уровнем, рост скорости больше единицы создает изменение положения в трехмерном времени, а не в трехмерном пространстве. Отсюда очевидно, что поиск “тахионов” – гипотетических частиц, движущихся с пространственной скоростью больше единицы, будет оставаться бесплодным. Скорости больше единицы не могут выявляться измерениями как скорость изменения координатных положений в пространстве. Их можно обнаружить лишь с помощью прямого измерения скорости или каких-то сопутствующих эффектов. Имеется много наблюдаемых феноменов требуемой природы, но их статус как свидетельств скоростей больше скорости света отвергается современными физиками на основании того, что они конфликтуют с допущением Эйнштейна об увеличении массы на высоких скоростях. Иными словами, от наблюдений требуют соответствия теории, а не чтобы теория удовлетворяла стандартной научной проверке – соответствию с наблюдением и экспериментом. Современный подход к необычным красным смещениям квазаров – блестящий пример ненаучного искажения наблюдений в целях соответствия теории. Имеются адекватные основания полагать, что они являются доплеровскими смещениями, возникающими за счет скоростей, с которыми эти объекты удаляются от Земли. Вплоть до недавнего времени в этой связи не возникало никаких проблем. В вопросах природы красных смещений и существования линейного отношения между красным смещением и скоростью царило полное единодушие. Такое благодушие закончилось, когда были обнаружены квазары с красными смещениями, превышающими 1, 00. На основании ранее принятой теории, красное смещение 1, 00 указывает на снижение скорости до скорости света. Следовательно, вновь открытые красные смещения в диапазоне больше единицы представляют прямое измерение движений квазаров со скоростями больше скорости света. Но современное научное сообщество не спешит оспаривать Эйнштейна, даже на основании прямого свидетельства; поэтому для сохранения ограничения скорости привлекается математика специальной теории относительности. Представляется, ситуация, что в связи с доплеровским смещением математических отношений специальной теории относительности не существуют, вообще не рассматривается. Как говорилось в главе 7, и как ясно объяснил в своих трудах сам Эйнштейн, уравнения Лоренца, выражающие эту математику, предназначены для примирения результатов прямых измерений скоростей (как в эксперименте Майкельсона-Морли) с измеряемыми изменениями координатного положения в пространственной системе отсчета. Как осознали все, включая Эйнштейна, именно прямое измерение скорости приводит к правильной числовой величине. (Конечно, Эйнштейн постулировал правомочность измерения скорости как основного принципа природы. ) Подобно результату эксперимента Майкельсона-Морли, доплеровское смещение является прямым измерением, просто счетной операцией, оно никоим образом не связано с измерением пространственных координат. Поэтому применение математики относительности к измерениям красного смещения абсолютно неоправданно. Ввиду того, что аспект “расширения времени” уравнений Лоренца применяется к некоторым другим явлениям, которые, кажется, никак не связаны с пространственными координатами, желательно предвосхитить дальнейшее развитие теории, обсуждаемое в главе 15. Оно покажет, что явления “расширения”, которые, казалось бы, включают только время (такие как срок жизни быстро движущихся неустойчивых частиц), на самом деле, являются следствиями изменения отношения между координатным пространственным положением (положением в фиксированной системе отсчета) и абсолютным пространственным положением (положением в естественно движущейся системе) объектов, занимающих эти положения. С другой стороны, эффект Доплера не зависит от пространственной системы отсчета. Способ, как время проявляется в наблюдении, зависит от природы явления, в котором оно наблюдается. Большие красные смещения ограничены высокоскоростными астрономическими объектами. Детальное исследование эффекта движения во времени в доплеровском смещении будет перенесено в том 2, который будет касаться квазаров. Сейчас, мы будем рассматривать другие наблюдаемые эффекты движения во времени, которые не осознаются как таковые научным сообществом, - эффект искажения шкалы пространственной системы отсчета. Как подчеркивалось в главе 3, традиционные пространственные системы отсчета не способны представлять больше одной переменной – пространства. И вследствие того, что в физической Вселенной имеются две основные переменные – пространство и время – мы можем пользоваться пространственными системами отсчета лишь на основании допущения, что скорость изменения времени остается постоянной. Далее, в начале этой главы, мы видели, что на всех скоростях, равных или меньше единицы, время, по существу, движется с постоянной скоростью, а все изменения происходят в пространстве. Из этого следует: если во всех приложениях правильно используются корректные величины общего времени, традиционные пространственные системы отсчета способны точно представлять все движения со скоростями 1/n. Но шкала пространственной системы координат связана со скоростью изменения времени, и точность координатного представления зависит от отсутствия любого изменения во времени, кроме непрерывной последовательности с нормальной скоростью, регистрируемой часами. На скоростях больше единицы сущностью, которая движется с фиксированной обычной скоростью, является пространство, а время переменно. Следовательно, превышение скорости больше единицы искажает пространственную систему координат. В пространственной системе отсчета разница координат между двумя точками А и В представляет собой пространство, пройденное любым объектом, движущимся от А к В со скоростью отсчета. Если скорость отсчета меняется, соответственно меняется и расстояние, соответствующее разнице координат АВ. Это так, независимо от природы процесса, применяющегося для измерения расстояния. Например, можно предположить, что в случае использования чего-то, похожего на линейку, сравнивающего расстояние с расстоянием, измерение координатного расстояния не зависело бы от скорости отсчета. Но это не так, поскольку длина линейки, расстояние между двумя ее концами, связано со скоростью отсчета так же, как расстояние между любыми другими двумя точками. Если разница координат между А и В равна х, если скорость отсчета обладает обычной величиной равной единице, она становится 2х, если скорость отсчета удваивается. Следовательно, если мы хотим представить движение с двойной скоростью света в одной из стандартных пространственных систем координат, допуская, что время движется как обычно, все расстояния, вовлеченные в эти движения, должны наполовину уменьшаться. Любая скорость больше единицы требует соответствующей модификации шкалы расстояний. Существование движения со скоростями больше единицы не имеет прямого соответствия с известными явлениями повседневной жизни, но оно важно во всех менее доступных областях, тех, которые мы называем отдаленными регионами. Большинство следствий, которые относятся к сферам очень большого (к сферам астрономии), не имеют значения в связи с темами, обсуждаемыми на ранней стадии развития теории. Но общая природа эффектов, создающихся скоростями больше единицы, наиболее четко иллюстрируется теми астрономическими явлениями, в которых такие скорости могут наблюдаться в широком масштабе. Таким образом, краткое исследование типичных высокоскоростных астрономических объектов поможет прояснить факторы, вовлеченные в ситуацию высоких скоростей. На предыдущих страницах мы исходили из теоретических допущений, что скорости больше скорости света могут создаваться процессами, включающими большие концентрации энергии, такими как взрывы. Последующее теоретическое рассмотрение (в томе 2) покажет, что, по существу, и звезды, и галактики подвергаются взрывам на определенных конкретных стадиях своего существования. Взрыв звезды обладает достаточной энергией для ускорения одних частей звездной массы до скоростей больше единицы, в то время как другие обретают скорости ниже этого уровня. Вещество с низкой скоростью выбрасывается в пространство в виде расширяющегося облака обломков, в которых частицы материи сохраняют обычные размеры, но разделены увеличивающимся количеством пустого пространства. Вещество с высокой скоростью тоже выбрасывается в виде расширяющегося облака, но из-за искажения шкалы системы отсчета в результате скоростей больше единицы, расстояния между частицами уменьшается, а не увеличивается. Чтобы подчеркнуть аналогию с облаком вещества, расширяющегося в пространстве, можно сказать, что частицы, расширяющиеся во времени, разделены увеличивающимся количеством пустого времени. В каждом случае, расширение происходит от ситуации, существовавшей в момент взрыва, а не от какого-то случайного нулевого уровня. В традиционной пространственной системе отсчета звезда была изначально стационарной или двигалась с низкой скоростью. В движущейся системе отсчета, определяемой часами, она была стационарна и во времени. В результате взрыва материя, выброшенная на низких скоростях, движется наружу в пространстве и остается в исходных условиях во времени. Материя, выброшенная с высокими скоростями, движется наружу во времени, но остается в исходных условиях в пространстве. Поскольку мы наблюдаем только пространственный результат всех движений, мы видим лишь материал, движущийся с низкой скоростью в своей истинной форме – форме расширяющегося облака. Материю, движущуюся с высокой скоростью, мы видим как объект, остающийся стационарным в исходном пространственном положении. Из-за пустого пространства между частицами движущегося наружу продукта взрыва, диаметр расширяющегося облака значительно больше диаметра исходной звезды. Пустое пространство между частицами движущегося вовнутрь продукта взрыва соответствует обратному отношению и переворачивает результат. Наблюдаемая совокупность - белый карлик - тоже расширяющийся объект, но у него расширение во времени эквивалентно сжатию в пространстве. И как мы наблюдаем это в пространственном аспекте, его диаметр существенно меньше, чем диаметр исходной звезды. Следовательно, он предстает перед наблюдателем как объект очень высокой плотности. Белый карлик – один из членов класса крайне компактных астрономических объектов, открытых за последние годы. Сегодня он бросает вызов базовым принципам традиционной физики. Одни из таких объектов – квазары - все еще пребывают без какого-либо разумного объяснения. Другие, вкл
Воспользуйтесь поиском по сайту: ©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...
|