Состав и механические свойства
Двухкарбидные твердые сплавы содержат карбиды вольфрама, и титана и называются титановольфрамовыми (группа ТВК или ТК). В марках Т5К10, Т14К8, Т15К6, Т30К4 цифры после буквы Т показывают процентное содержание карбида титана TiC, буква К – Co, цифра после буквы К – содержание кобальта, остальное – WC. Пример расшифровки сплава Т5К10: 5% TiC + 10% Co + 85% WC. Появление твердых сплавов позволило не только повысить скорости резания за счет их более высокой теплостойкости по сравнению с быстрорежущими сталями (скорость резания твердосплавным инструментом в 5–10 раз выше, чем для инструмента из быстрорежущей стали), но и заметно увеличить период стойкости инструмента, поскольку твердыми сплавы названы именно за их способность противостоять износу. Однако, как ранее, так и ныне существуют определенные ограничения на применение этих материалов для режущего инструмента. Объясняется это основными свойствами твердых сплавов. Почему металлокерамические? Под твердыми сплавами понимают сплавы на основе высокотвердых и тугоплавких карбидов вольфрама, титана, тантала, соединенных металлической связкой, как правило, кобальтом. Твердые сплавы являются металлокерамическими, т. к. карбиды перечисленных металлов в силу своих строения и свойств нельзя отнести к веществам, которые мы привыкли считать металлом. Такие материалы обладают высокой твердостью HRA 80–92 (HRCЭ 73–76), износостойкостью и высокой теплостойкостью (до 800–1000°С). По своим эксплутационным свойствам они превосходят инструменты из инструментальных сталей. Однако перечисленные достоинства одновременно являются и их недостатками. Высокая твердость существенно затрудняет обработку сплавов, поэтому возникают сложности изготовления фасонных деталей (режущих кромок). Кроме того, высокая твердость материала сопряжена с низкой прочностью на изгиб и повышенной хрупкостью. По этим характеристикам твердые сплавы уступают сталям.
Свойства твердых сплавов и, следовательно, области их применения зависят от состава и зернистости карбидной фазы (WC, TiC, TaC), а также соотношения карбидной и связывающей фаз. Регулированием этих факторов можно в определенных пределах менять свойства сплавов. Классификация твердых сплавов Металлокерамические твердые сплавы подразделяются на три группы: I. Однокарбидные сплавы типа ВКЗ, ВК8, ВК15, ВК25. В маркировке В означает карбид вольфрама, К — кобальт, цифра показывает массовую долю кобальта в процентах. Чем выше содержание кобальта, тем меньше хрупкость сплава, хотя при этом понижаются твердость и износостойкость. II. Двухкарбидные (WС+ ТiС+Со) титано-вольфрамовые сплавы типа ТК (Т5К10, Т14К8, Т15К6, Т30К4, Т5К12В), представляющие соединения карбидов вольфрама и титана, сцементированных кобальтом. Эти сплавы менее прочны, чем сплавы типа ВК, но они имеют более высокую износостойкость при обработке деталей из различных видов стали. В обозначении сплавов этой группы цифра, следующая после буквы Т, обозначает примерное содержание в сплаве карбида титана, а цифра после буквы К — содержание кобальта. Например, сплав Т15К6 содержит 15% карбида титана, 6% кобальта, а остальные 79% карбида вольфрама. По сравнению со сплавами группы ВК они имеют повышенную вязкость. III. Трехкарбидные сплавы системы (WС+ТiС+ТаС+Со). Например, сплав Т7К12 имеет состав: 81% WС+7% (3% ТаС+4% ТiС)+12% Со. Трехкарбидные сплавы имеют повышенную износоустойчивость, вязкость, хорошо сопротивляются вибрациям. Сплавы первой группы имеют наибольшую прочность, но и более низкую твердость, чем сплавы других групп. Они теплостойки до 800°С. Повышенная износостойкость и сопротивляемость ударам сплавов группы ВК делает из привлекательными для обработки древесины.
Сплавы второй группы имеют более высокую теплостойкость (до 900–1000°С) и твердость. Это связано с тем, что карбид вольфрама частично растворяется в карбиде титана при температуре спекания с образованием твердого раствора (Ti, W)С, имеющего более высокую твердость, чем WC. Структура карбидной фазы зависит от соотношения WC и TiC в шихте. В сплаве Т30К4 образуется одна карбидная фаза — твердый раствор (Ti, W)С, который придает сплаву максимальную твердость (HRA 92), но пониженную прочность. В остальных сплавах этой группы количество WC превышает растворимость в TiС, поэтому карбиды вольфрама в них присутствуют в виде избыточных частиц. В сплавах третьей группы структура карбидной основы представляет собой твердый раствор (Ti, Та, W)С и избыток WC. Сплавы этой группы отличаются от предыдущей большей прочностью, лучшей сопротивляемостью вибрациям и выкрашиванию. Общим недостатком рассмотренных сплавов, помимо высокой хрупкости, является повышенная дефицитность исходного вольфрамового сырья — основного компонента, определяющего их повышенные физико-механические характеристики. Поэтому перспективно направление использования безвольфрамовых твердых сплавов. Хорошо себя зарекомендовали сплавы, в которых в качестве основы используется карбид титана, а в качестве связки — никель и молибден. Они маркируются буквами КТС и ТН. Твердые сплавы КТС-1 и КТС-2 содержат 15–17% Ni и 7–9% Mo соответственно, остальное — карбид титана. В твердых сплавах типа ТН-20, ТН-25, ТН-30 в качестве связующего металла применяют в основном никель в количестве 16–30%. Концентрация молибдена составляет 5–9%, остальное — также карбид титана. Твердость подобных твердых сплавов составляет 87–94 HRA, сплавы имеют высокую износо- и коррозионную стойкость. Их используют для изготовления режущего инструмента.
Воспользуйтесь поиском по сайту: ©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...
|