Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

Лекция 20. Особые режимы течения жидкостей




Кроме достаточно подробно рассмотренных в настоящем курсе видов движения жидкости: ламинарного и турбулентного, движения жидкости при прохождении различных сопротивлений, истечений через насадки и других, существуют и другие разновидности течения. Они описываются гораздо более сложным математическим аппаратом или не описываются вообще, либо требуют сложного экспериментального изучения. Ниже рассмотрим основные из них, нередко проявляющиеся в гидросистемах технологического оборудования.

Кавитационные течения

В некоторых случаях при движении жидкости возникают явления, связанные с изменением её агрегатного состояния, а именно, с превращением некоторых её частиц в газообразное состояние.

Например, при течении жидкости через местное сужение трубы происходит увеличение скорости и падение давления. Если абсолютное давление при этом уменьшается до значения, равного упругости насыщенных паров этой жидкости при данной температуре, или до давления, при котором начинается интенсивное выделение из нее газов, то в данном месте потока начинается интенсивное парообразование и выделение газов. В расширяющейся части потока скорость уменьшается, а давление возрастает, и выделение паров и газов прекращается; выделившиеся пары частично или полностью конденсируются, а газы постепенно растворяются.

Это местное нарушение сплошности течения с образованием паровых и газовых пузырей (каверн), обусловленное местным падением давления в потоке, называется кавитацией.

 
 

Если в прозрачной трубке, диаметр которой сначала плавно уменьшается, а затем еще более плавно увеличивается, течёт поток жидкости, скорость которого регулируется, то можно визуально наблюдать следующие явления.

При малой скорости жидкости падение давления в узком месте трубки незначительно, поток вполне прозрачен. При увеличении скорости в трубке абсолютное давление в соответствии с уравнением Бернулли будет падать и при некотором значении

,

где Pнп - давление насыщенных паров,

в трубке появляется отчетливо видимое помутнение жидкости, обусловленное появлением пузырьков газа. Это и есть зона кавитации.

При дальнейшем увеличении скорости размеры зоны кавитации возрастают. Кавитация сопровождается характерным шумом, а при длительном её воздействии также и эрозионным разрушением твёрдых, как правило, металлических стенок. Последнее объясняется тем, что конденсация пузырьков пара (и сжатие пузырьков газа) происходит со значительной скоростью, частицы жидкости, заполняющие полость конденсирующегося пузырька, устремляются к его центру и в момент завершения конденсации вызывают местный гидравлический удар, т. е. значительное местное повышение давления. Разрушение материала при кавитации происходит не там, где выделяются пузырьки, а там, где они конденсируются вследствие длительного воздействия знакопеременных сил.

Кавитация в обычных случаях явление нежелательное.

При кавитации также возрастает сопротивление трубопроводов и, следовательно, уменьшается их пропускная способность.

«Кавитация может возникать во всех устройствах, где поток претерпевает местное сужение с последующим расширением, например, в кранах, вентилях, задвижках, диафрагмах, жиклерах и т.п. В отдельных случаях возникновение кавитации возможно также и без расширения потока вслед за его сужением, а также в трубах постоянного сечения при увеличении нивелирной высоты и гидравлических потерь.

Кавитация может иметь место в гидромашинах (насосах и гидротурбинах), а также на лопастях быстровращающихся гребных винтов. В этих случаях следствием кавитации являются резкое снижение коэффициента полезного действия машины и затем постепенное разрушение ее деталей, подверженных воздействию кавитации. В гидросистемах кавитация может возникать в трубопроводах низкого давления - во всасывающих трубопроводах. В этом случае область кавитации распространяется на значительную часть всасывающего трубопровода или даже на всю его длину. Поток в трубопроводе при этом становится двухфазным, состоящим из жидкой и паровой фаз.

В начальной стадии паровыделения паровая фаза может быть в виде мелких пузырьков, распределённых по объему движущейся жидкости приблизительно равномерно. При дальнейшем парогазовыделении происходит укрупнение пузырьков, которые в случае горизонтального расположения трубы движутся преимущественно в верхней части ее сечения.

В дальнейшем возможны случаи полного разделения парогазовой и жидкой фаз и движения их самостоятельными потоками, первая фаза - в верхней, вторая - в нижней части сечения трубопровода. При небольших диаметрах трубопровода возможно образование парогазовых пробок и движение фаз, жидкой и газовой, чередующимися столбиками.

С увеличением парогазовой фазы пропускная способность трубопровода значительно уменьшается. Конденсация выделившихся паров и растворение газа происходит в насосах, где давление значительно повышается, и в напорных трубопроводах, по которым жидкость движется под высоким давлением от насоса к потребителю.

Кавитация, обусловленная выделением паров жидкости, происходит по-разному в однокомпонентных (простых) и многокомпонентных (сложных) жидкостях. Для однокомпонентной жидкости давление, соответствующее началу кавитации, вполне определяется упругостью насыщенных паров, зависящей только от температуры, и кавитация протекает так, как было описано выше.

Многокомпонентная жидкость состоит из так называемых легких и тяжелых фракций. Первые обладают большим значением упругости паров, чем вторые, поэтому при кавитации сначала вскипают легкие фракции, а затем тяжелые. Конденсация же паров происходит в обратном порядке, сначала выпадают тяжелые фракции, затем - легкие.

При наличии легких фракций многокомпонентные жидкости более склонны к кавитации, и паровая фаза в них удерживается дольше, но процесс кавитации выражен менее резко, чем у однокомпонентных жидкостей».

Для характеристики течения с кавитацией применяется безразмерный критерий χ, называемый числом кавитации и равный

где P - абсолютное давление,

Pп - давление парообразования,

V - скорость потока.

Обычно число кавитации определяют на входе в тот или иной агрегат, внутри которого возможно возникновение кавитации.

Значение , при котором в агрегате начинается кавитация, называется критическим числом кавитации. При > коэффициент агрегата от не зависит, а при < возрастает с уменьшением .

Обычно стремятся к тому, чтобы кавитацию в гидросистемах не допускать.

Но можно отметить, что иногда это явление оказывается полезным. Его используют в так называемых кавитационных регуляторах расхода, обеспечивающих практически постоянный расход через зону кавитации. На принципе использования гидравлических микроударов, происходящих при кавитации, построены устройства для регенерации (очистки от загрязнений) очищающих элементов фильтров.

Течение с облитерацией

При течении жидкости через капилляры, а также малые зазоры наблюдается явление, которое нельзя объяснить законами гидравлики. Это явление заключается в том, что расход жидкости через капилляр или зазор с течением времени уменьшается, несмотря на то, что перепад давления, при котором происходит движение жидкости, и ее физические свойства остаются неизменными. Причина этого явления кроется в том, что при определенных условиях происходит как бы засорение (заращивание) канала твердыми частицами, причем в зазорах и капиллярных каналах размером, меньшим 0,01 мм, может произойти полное заращивание проходного сечения и уменьшение расхода до нуля. Этот процесс носит название облитерации и заключается в том, что на поверхности раздела твердого тела и жидкости происходит под действием молекулярных и электромагнитных сил, возникающих между стенкой и жидкостью, адсорбция, т.е. уплотнение жидкости до практически твердого состояния на поверхности стенки.

Степень облитерации зависит от молекулярной структуры жидкости, причем это явление в большей степени проявляется в сложных, высокомолекулярных жидкостях типа масляной смеси на керосиновой основе, применяемой в силовых гидросистемах. Толщина адсорбционного слоя для жидкостей этого типа составляет несколько микрометров. Поэтому при течении через капилляры и малые зазоры этот слой может существенно уменьшить площадь поперечного сечения канала или даже полностью его перекрыть.

С повышением температуры интенсивность адсорбции, а следовательно, и облитерации, понижается. Повышение перепада давления, под которым происходит движение жидкости через зазор или капилляр, наоборот, увеличивает степень облитерации.

Если одна из стенок, образующих зазор, приводится в движение, т.е. происходит сдвиг, то образованные адсорбционные слои разрушаются, облитерация устраняется и восстанавливается первоначальный расход жидкости через зазор. Однако для такого сдвига обычно требуется значительное усилие. В зазорах между подвижной и неподвижной стенками облитерации не происходит.

Для избегания облитерации каналов жиклеров и дросселей рекомендуется их отверстия выполнять не меньше 0,2—0,4 мм. Для устранения облитерации через дросселирующее отверстие пропускают стержень, перемещающийся возвратно-поступательно и обеспечивающий автоматическую прочистку отверстия (разрушение адсорбционного слоя).


Течение с теплообменом

В рассмотренных выше случаях ламинарного течения не учитывалось изменение температуры и, следовательно, изменение вязкости жидкости как в пределах поперечного сечения, так и вдоль потока, т.е. предполагалось постоянство температуры во всех точках потока. Подобное течение называют изотермическим. В общем случае, конечно, течение жидкости по гидросистеме сопровождается изменением температуры.

Очевидно, что если по трубопроводу движется жидкость, температура которой значительно выше температуры окружающей среды, то такое течение сопровождается теплоотдачей через стенку трубы во внешнюю среду и, следовательно, охлаждением жидкости. Когда же температура движущейся жидкости ниже температуры окружающей среды, то происходит приток тепла через стенку трубы. В результате жидкость в процессе течения нагревается.

В обоих указанных случаях при течении жидкости осуществляется теплообмен с внешней средой. При этом температура и вязкость жидкости, непостоянны, а течение не изотермическое.

Поэтому зависимости, полученные в предположении постоянства вязкости по сечению потока, при течении со значительным теплообменом нуждаются в поправках. При течении жидкости, сопровождающемся её охлаждением, слои жидкости, непосредственно прилегающие к стенке, имеют температуру ниже, а вязкость выше, чем в основной части потока. Вследствие этого торможение в пристенных слоях жидкости более интенсивное, а градиент скорости у стенки меньше градиента скорости в основной части потока.

При течении же, сопровождающемся нагреванием жидкости, обусловленным притоком тепла через стенку, пристенные слои жидкости будут иметь более высокую температуру и меньшую вязкость, вследствие чего градиент скорости у стенки будет больше, чем в основной части потока. Таким образом, вследствие теплообмена через стенку трубы между жидкостью и внешней средой происходит нарушение параболического закона распределения скоростей по сечению потока.

На рисунке показаны сравнительные графики распределения скоростей при изотермическом течении (линия 1), при течении с охлаждением жидкости (линия 2) и при течении с её нагреванием (линия 3). Из рисунка следует, что охлаждение жидкости влечет за собой увеличение неравномерности распределения скоростей, а нагревание – уменьшение, по сравнению с обычным параболическим распределением скоростей.

Изменение профиля скоростей при отклонении от изотермического течения вызывает изменение закона сопротивления потоку жидкости.

При ламинарном течении вязких жидкостей в трубах с теплообменом (охлаждением) сопротивление получается больше, а при течении с притоком тепла (нагреванием) меньше, чем при изотермическом течении.

Ввиду того, что точное решение задачи о течении жидкости с теплообменом представляет большую сложность, так как приходится учитывать переменность температуры и вязкости жидкости по поперечному сечению и вдоль трубы, а также рассматривать тепловые потоки в разных сечениях трубы, для практических расчетов пользуются следующей, приближенной формулой для определения коэффициента потерь на трение с учётом теплообмена

где Reср.ж - число Рейнольдса, подсчитанное по средней вязкости жидкости,

νср.t ст - вязкость жидкости, соответствующая средней температуре стенки,

νср - средняя вязкость жидкости.

Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...