Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

Легированные инструментальные стали.




Легированные инструментальные стали (X, 9Х, ХВГ, ХВ5, Х12М, Х12, 5ХНМ) маркируются так: если впереди стоит цифра, то она указывает на процентное содержание углерода, увеличенное в 10 раз. Если цифра не стоит, это значит, что углерода содержится приблизительно один процент; далее следует буква, указывающая наименование легирующего элемента, затем цифра, указывающая процентное содержание этого элемента. Буква А в инструментальных легирующих сталях не ставится, так как все эти стали высокого качества.

Указанная система маркировки охватывает большинство применяемых легированных сталей, но существуют стали, группа которых условно обозначается буквой, например, группа быстрорежущих сталей —Р (Р18, Р9 и т. д.); группа немагнитных Н (Н25, Н36, Н42); группа шарикоподшипниковых Ш (ШХ15 и др.); группа нержавеющих—Ж (Ж1, Ж2) и т. д.

Легированные стали по структуре в нормализованном состоянии подразделяются на пять классов:

1) перлитный,

2) мартенситный;

3) карбидный (ледебуритный);

4) ферритный;

5) аустенитный.

Стали перлитного класса содержат 5—6% легирующих элементов. Они в основном применяются как конструкционные стали.

Стали мартенситного и карбидного классов содержат большое количество легирующих элементов (до 24%). Эти стали применяются в основном для изготовления инструментов. Типичным их представителем является быстрорежущая сталь.

Стали ферритного и аустенитного классов не испытывают фазовых превращений и применяются как стали с особыми физическими свойствами (магнитные, жаростойкие, нержавеющие, немагнитные и т. д.).


 

36. Штамповые стали для деформации металла в холодном и горячем состояниях.
Штамповые стали для деформирования в холодном состоянии работают в разных условиях, следовательно, в различном напряженном состоянии. Нередко штампы используются в условиях высоких напряжений в связи с применением прогрессивных способов изготовления сталей холодным деформированием и все большей потребностью сплавов и сталей как с высокими прочностными свойствами, а следовательно, с повышенным сопротивлением деформированию, так и с более высокой истирающей способностью. Многие штамповые стали при ужесточении условий деформирования не обеспечивают необходимой стойкости штампов. Это в первую очередь относится к условиям деформирования методом выдавливания, калибровки, обработ ки металла импульсным методом, при котором вязкость сталей должна быть повышенной, и т. д.  [c.111]
Штамповые стали для деформирования в холодном состоянии (без снятия стружки). В этой группе сталей следует различать  [c.759]
ШТАМПОВЫЕ СТАЛИ ДЛЯ ДЕФОРМИРОВАНИЯ В ХОЛОДНОМ СОСТОЯНИИ (ГРУППА 3)  [c.790]
Углеродистые стали используют для инструментов, не подвергаемых в процессе работы нагреву до температур выше 150—200° С и не требующих при изготовлении значительного шлифования (инструменты для ручной работы напильники, метчики, развертки, ножовки, топоры, колуны, стамески, слесарно-монтажные и хирургические инструменты, бритвы, штамповый инструмент для деформирования в холодном состоянии, некоторые измерительные инструменты).  [c.342]
В зависимости от температурных условий эксплуатации различают штамповые стали для деформирования в холодном и горячем состоянии.  [c.205]
Штамповые стали применяют для изготовления штампов, пуансонов, матриц, фильер, пресс-форм для литья под давлением. В зависимости от температурных условий эксплуатации различают стали для деформирования в холодном и горячем состоянии.  [c.397]
Штамповые стали для холодного деформирования (ГОСТ 5950—73). Для изготовления обрезных, высадочных и вытяжных штампов и других инструментов, необходимых для деформирования металла в холодном состоянии, применяют стали, обладающие высокой твердостью и износостойкостью при достаточной вязкости.  [c.239]
Инструмент, применяемый для обработки металлов давлением (штампы, пуансоны, матрицы, валики и т. д.), изготавливают из штамповых сталей. Так как металлы можно подвергать деформации в холодном, а также в горячем состояниях (до 900—1200° С), то различают стали для штампов холодного деформирования и стали для штампов горячего деформирования. Химический состав, механические свойства и назначение штамповых сталей приведены в ГОСТ 5950—63.  [c.240]
При рассмотрении сталей для режущего инструмента надо четко уяснить требования, предъявляемые к ним, режимы термической обработки и недостатки отдельных групп сталей. Особое внимание следует уделить быстрорежущим сталям и, в частности, особенностям их термической обработки. При изучении штамповых сталей необходимо различать условия работы штампов для деформирования металла в холодном и горячем состояниях и, в связи с этим, особенности их термической обработки.  [c.10]


 

Быстрорежущие стали.

Быстроре́жущие ста́ли — легированные стали, предназначенные, главным образом, для изготовления металлорежущего инструмента, работающего при высоких скоростях резания.

 

Быстрорежущая сталь должна обладать высоким сопротивлением разрушению, твёрдостью (в холодном и горячем состояниях) и красностойкостью.

Высоким сопротивлением разрушению и твердостью в холодном состоянии обладают и углеродистые инструментальные стали. Однако инструмент из них не в состоянии обеспечить высокоскоростные режимы резания. Легирование быстрорежущих сталей вольфрамом, молибденом, ванадием и кобальтом обеспечивает горячую твердость и красностойкость стали.

Содержание

[скрыть]

1Истории создания

2Характеристики быстрорежущих сталей

2.1Горячая твердость

2.2Красностойкость

2.3Химический состав быстрорежущих сталей

3Изготовление и обработка быстрорежущих сталей

3.1Принципы легирования быстрорежущих сталей

4Маркировка быстрорежущих сталей

5Применение

6Примечания

7Литература

8Ссылки

Истории создания[править | править вики-текст]

 

Сверло с покрытием из нитрида титана

Для обточки деталей из дерева, цветных металлов, мягкой стали резцы из обычной твердой стали были вполне пригодны, но при обработке стальных деталей резец быстро разогревался, скоро изнашивался и деталь нельзя было обтачивать со скоростью больше 5 м/мин[1].

Барьер этот удалось преодолеть после того, как в 1858 году Р. Мюшетт получил сталь, содержащую 1,85 % углерода, 9 % вольфрама и 2,5 % марганца. Спустя десять лет Мюшетт изготовил новую сталь, получившую название самокалки. Она содержала 2,15 % углерода, 0,38 % марганца, 5,44 % вольфрама и 0,4 % хрома. Через три года на заводе Самуэля Осберна в Шеффилде началось производство мюшеттовой стали. Она не теряла режущей способности при нагревании до 300 °C и позволяла в полтора раза увеличить скорость резания металла — 7,5 м/мин.

Спустя сорок лет на рынке появилась быстрорежущая сталь американских инженеров Тэйлора и Уатта. Резцы из этой стали допускали скорость резания до 18 м/мин. Эта сталь стала прообразом современной быстрорежущей стали Р18.

Ещё через 5—6 лет появилась сверхбыстрорежущая сталь, допускающая скорость резания до 35 м/мин. Так, благодаря вольфраму было достигнуто повышение скорости резания за 50 лет в семь раз и, следовательно, во столько же раз повысилась производительность металлорежущих станков.

Дальнейшее успешное использование вольфрама нашло себе применение в создании твердых сплавов, которые состоят из вольфрама, хрома, кобальта. Были созданы такие сплавы для резцов, как стеллит. Первый стеллит позволял повысить скорость резания до 45 м/мин при температуре 700—750 °C. Сплав вида, выпущенный Круппом в 1927 году, имел твердость по шкале Мооса 9,7—9,9 (твердость алмаза равна 10).

В 1970-х годах в связи с дефицитом вольфрама быстрорежущая сталь марки Р18 была почти повсеместно заменена на сталь марки Р6М5 (так называемый «самокал», самозакаливающаяся сталь), которая, в свою очередь, вытесняется безвольфрамовыми Р0М5Ф1 и Р0М2Ф3.

Характеристики быстрорежущих сталей[править | править вики-текст]

Горячая твердость[править | править вики-текст]

При нормальной температуре твердость углеродистой стали даже несколько выше твердости быстрорежущей стали. Однако в процессе работы режущего инструмента происходит интенсивное выделение тепла. При этом до 80 % выделившегося тепла уходит на разогрев инструмента. Вследствие повышения температуры режущей кромки начинается отпуск материала инструмента и снижается его твердость.

После нагрева до 200 °C твердость углеродистой стали начинает быстро падать. Для этой стали недопустим режим резания, при котором инструмент нагревался бы выше 200 °C. У быстрорежущей стали высокая твердость сохраняется при нагреве до 500—600 °C. Инструмент из быстрорежущей стали более производителен, чем инструмент из углеродистой стали.

Красностойкость[править | править вики-текст]

Если горячая твердость характеризует то, какую температуру сталь может выдержать, то красностойкость характеризует, сколько времени сталь будет выдерживать такую температуру. То есть насколько длительное время закаленная и отпущенная сталь будет сопротивляться разупрочнению при разогреве.

Существует несколько характеристик красностойкости. Приведем две из них.

Первая характеристика показывает, какую твердость будет иметь сталь после отпуска при определенной температуре в течение заданного времени.

Второй способ охарактеризовать красностойкость основан на том, что интенсивность снижения горячей твердости можно измерить не только при высокой температуре, но и при комнатной, так как кривые снижения твердости при высокой температуре и комнатной идут эквидистантно, а измерить твердость при комнатной температуре, разумеется, гораздо проще, чем при высокой. Опытами установлено, что режущие свойства теряются при твердости 50 HRC при температуре резания, что соответствует примерно 58 HRC при комнатной. Отсюда красностойкость характеризуется температурой отпуска, при которой за 4 часа твердость снижается до 58 HRC (обозначение K4р58).

Сопротивление разрушению Кроме «горячих» свойств, от материала для режущего инструмента требуются и высокие механические свойства; под этим подразумевается сопротивление хрупкому разрушению, так как при высокой твердости (более 60 HRC) разрушение всегда происходит по хрупкому механизму. Прочность таких высокотвердых материалов обычно определяют как сопротивление разрушению при изгибе призматических, не надрезанных образцов, при статическом (медленном) и динамическом (быстром) нагружении. Чем выше прочность, тем большее усилие может выдержать рабочая часть инструмента, тем большую подачу и глубину резания можно применить, и это увеличивает производительность процесса резания.

Химический состав быстрорежущих сталей[править | править вики-текст]

Изготовление и обработка быстрорежущих сталей[править | править вики-текст]

Быстрорежущие стали изготавливают как классическим способом (разливка стали в слитки, прокатка и проковка), так и методами порошковой металлургии (распыление струи жидкой стали азотом)[3]. Качество быстрорежущей стали в значительной степени определяется степенью её прокованности. При недостаточной проковке изготовленной классическим способом стали наблюдается карбидная ликвация.

При изготовлении быстрорежущих сталей распространенной ошибкой является подход к ней как к «самозакаливающейся стали». То есть достаточно нагреть сталь и охладить на воздухе, и можно получить твердый износостойкий материал. Такой подход абсолютно не учитывает особенности высоколегированных инструментальных сталей.

Перед закалкой быстрорежущие стали необходимо подвергнуть отжигу. В плохо отожженных сталях наблюдается особый вид брака: нафталиновый излом, когда при нормальной твердости стали она обладает повышенной хрупкостью.

Грамотный выбор температуры закалки обеспечивает максимальную растворимость легирующих добавок в α-железе, но не приводит к росту зерна.

После закалки в стали остается 25—30 % остаточного аустенита. Помимо снижения твердости инструмента, остаточный аустенит приводит к снижению теплопроводности стали, что для условий работы с интенсивным нагревом режущей кромки является крайне нежелательным. Снижения количества остаточного аустенита добиваются двумя путями: обработкой стали холодом или многократным отпуском[3]. При обработке стали холодом её охлаждают до −80…−70 °C, затем проводят отпуск. При многократном отпуске цикл «нагрев — выдержка — охлаждение» проводят по 2—3 раза. В обоих случаях добиваются существенного снижения количества остаточного аустенита, однако полностью избавиться от него не получается.

Принципы легирования быстрорежущих сталей[править | править вики-текст]

Высокая твердость мартенсита объясняется растворением углерода в α-железе. Известно, что при отпуске из мартенсита в углеродистой стали выделяются мельчайшие частицы карбида. Пока выделившиеся карбиды ещё находятся в мельчайшем дисперсном рассеянии (то есть на первой стадии выделения при отпуске до 200 °C), твердость заметно не снижается. Но если температуру отпуска поднять выше 200 °C, происходит рост карбидных выделений, и твердость падает.

Чтобы сталь устойчиво сохраняла твердость при нагреве, нужно её легировать такими элементами, которые затрудняли бы процесс коагуляции карбидов. Если ввести в сталь какой-нибудь карбидообразующий элемент в таком количестве, что он образует специальный карбид, то красностойкость скачкообразно возрастает. Это обусловлено тем, что специальный карбид выделяется из мартенсита и коагулирует при более высоких температурах, чем карбид железа, так как для этого требуется не только диффузия углерода, но и диффузия легирующих элементов. Практически заметная коагуляция специальных карбидов хрома, вольфрама, молибдена, ванадия происходит при температурах выше 500 °C.

Красностойкость создается легированием стали карбидообразующими элементами (вольфрамом, молибденом, хромом, ванадием) в таком количестве, при котором они связывают почти весь углерод в специальные карбиды, и эти карбиды переходят в раствор при закалке. Несмотря на сильное различие в общем химическом составе, состав твердого раствора очень близок во всех сталях, атомная сумма W+Mo+V, определяющая красностойкость, равна примерно 4 % (атомн.), отсюда красностойкости и режущие свойства у разных марок быстрорежущих сталей близки. Быстрорежущая сталь, содержащая кобальт, превосходит по режущим свойствам остальные стали (он повышает красностойкость), но кобальт очень дорогой элемент.

Маркировка быстрорежущих сталей[править | править вики-текст]

В советских и российских марочниках сталей марки быстрорежущих сталей обычно имеют особую систему обозначений и начинаются с буквы «Р» (rapid — быстрый). Связано это с тем, что эти стали были изобретены в Англии, где такую сталь называли «rapid steel». Цифра после буквы «Р» обозначает среднее содержание в ней вольфрама (в процентах от общей массы, буква В пропускается). Затем указывается после букв М, Ф и К содержание молибдена, ванадия и кобальта. Инструменты из быстрорежущей стали иностранного производства обычно маркируются аббревиатурой HSS (High Speed Steel).

Применение[править | править вики-текст]

 

Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...