Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

Нервно-мышечный синапс. Формирование потенциала концевой пластинки (ПКП). Отличия ПКП от потенциала действия.




Синапсы с химической передачей возбуждения обладают рядом общих свойств: возбуждение через синапсы проводится только в одном направлении, что обусловлено строением синапса (медиатор выделяется только из пресинаптической мембраны и взаимодействует с рецепторами постсинаптической мембраны); передача возбуждения через синапсы осуществляется медленнее, чем по нервному волокну (синаптическая задержка); синапсы обладают низкой лабильностью и высокой утомляемостью, а также высокой чувствительностью к химическим (в том числе и к фармакологическим) веществам; в синапсах происходит трансформация ритма возбуждения.

Возбуждение передается с помощью медиаторов (посредников), Медиаторы - это химические вещества, которые в зависимости от их природы делятся на следующие группы; моноамины (ацетилхолин, дофамин, норадреналин, серотонин), аминокислоты (гамма-аминомасляная кислота - ГАМК, глугаминовая кислота, глицин и др.) и нейропептиды (вещество Р, эндорфины, нейротензин, ангиотензин, вазопрессин, соматостатин и др.). Медиатор находится в пузырьках пресинаптического утолщения, куда он может поступать либо из центральной области нейрона с помощью аксонального транспорта либо за счет обратного захвата медиатора из синаптической щели. Он может также синтезироваться в синаптических терминалях из продуктов его расщепления.

К окончанию нервного волокна приходит потенциал действия (ПД); синаптические пузырьки высвобождают медиатор (ацетилхолин) в сипаптическую щель; ацетилхолин (АХ) связывается с рецепторами постсинаптической мембраны; потенциал постсинаптической мембраны снижается от минус 85 до минус 10 мВ (возникает ВПСП). Под действием тока, идущего от деполяризованного участка к недеполяризованиым, возникает потенциал действия на мембране мышечного волокна.

ВПСП-возбуждающий постсинаптический потенциал.

Отличия ПКП от ПД:

1. ПКП в 10 раз дольше ПД.

2. ПКП возникает на постсинаптической мембране.

3. ПКП обладает большей амплитудой.

4. Величина ПКП зависит от числа молекул ацетилхолина, связанных с рецепторами постсинаптической мембраны, т.е. в отличие от потенциала действия ПКП градуален.

Строение и функции тpомбоцитов. Этапы сосудисто-тромбоцитарного гемостаза. Регуляция мегакариоцитопоэза и тромбоцитопоэза

Тромбоциты (кровяные пластинки) имеют дисковиднуцю форму и диаметр 2-5 мкм. Они образуются в красном костном мозге путем отщепления участков цитоплазмы с мембраной от мегакариоцитов. Тромбоциты не имеют ядра, но содержат сложную систему органелл. Ими являются гранулы, микротрубочки, микрофиламенты, митохондрии. Наружная мембрана тромбоцитов имеет рецепторы, при активации которых происходит их адгезия – это приклеивание тромбоцитов к эндотелию сосудов. А также агрегация – склеивание друг с другом. В их мембране из простагландинов синтезируются тромбоксаны, ускоряющие агрегацию. При стимуляции тромбоцитов происходит активация сократительного аппарата, которым являются микротрубочки и микрофиламенты. Они сжимаются и из них, через систему канальцев мембраны, выходят вещества, необходимые для свертывания крови – кальций, серотонин, норадреналин, адреналин. Кальций стимулирует адгезию тромбоцитов, их сокращение, синтез тромбоксанов. Серотонин, норадреналин, адреналин суживают сосуды. В тромбоцитах также вырабатываются антигепариновыйфактор, ростковыйфактор, стимулирующий заживление эндотелия и гладких мышц сосудов, фермент тромбостенин, вызывающий сокращение нитей фибрина в тромбе и т.д.(соделжание 180-320*109л.)

Благодаря сосудисто-тромбоцитарного гемостаза может самостоятельно прекратиться кровотечение из небольших сосудов. Но при повреждении крупных сосудов этого механизма недостаточно. Здесь он выступает только первичным гемостазом, с которого начинаются все фазы остановки кровотечения.

После повреждения сосудов последовательно запускаются этапы сосудисто-тромбоцитарного гемостаза.

1. Рефлекторный спазм сосудов начинается сразу после повреждения, - он обусловлен местными рефлекторными механизмами и поддерживается реакцией гладких мышц сосудов поврежденного участка на вазоактивные соединения, образующиеся здесь. Кроме того, при последовательном разрушении с тромбоцитов выделяются сосудосуживающие вещества (серотонин, адреналин, тромбоксан).

2. Адгезия - приклеивание тромбоцитов к месту повреждения. В этом процессе ведущая роль принадлежит волокнам коллагена, к которым прилипают отрицательно заряженные тромбоциты. При этом тромбоцит меняет свою форму и выбрасывает длинные ниточные отростки - псевдоподии. Важнейшим плазменным фактором адгезии тромбоцитов является гликопротеид, синтезируемый эндотелием сосудов, т.е. фактор Виллебранда (он накапливается также и в тромбоцитах).

3. Обратная агрегация (скопление) тромбоцитов. Появление ниточных отростков, изменение формы тромбоцитов происходит еще при подходе к месту повреждения. Это способствует «склеиванию» тромбоцитов друг с другом (по 10-20) и прилипание в таком виде к стенке сосуда. Процесс агрегации ускоряет выделение из разрушенных тромбоцитов АДФ, адреналина, арахидоновой кислоты, простагландинов. Вследствие этого формируется первичный, так называемый белый тромб прикрывает поврежденный участок. Но он еще неплотный и может пропускать плазму крови.

4. Необратимая агрегация тромбоцитов - следующий этап превращения белого тромба. Основным стимулятором укрепления тромба является тромбин, который до сих пор (через 5-10 с после повреждения) образовался во время реакций коагуляционного гемостаза, происходящих параллельно. Важно то, что тромбин вызывает агрегацию в дозах, значительно меньше тех, которые нужны для создания настоящего тромба.

5. Ретракция тромбоцитарного тромба. Из разрушенных тромбоцитов получается пластинчатый фактор (ПФ-6) - тромбостенин. ПФ-6 напоминает актомиозин. Он способен сокращаться и тем самым уменьшать размер и уплотнять сгусток. В агрегации тромбоцитов, кроме названных факторов, участвующих небелковые (Са2 +, Mg2 +) и белковые плазменные кофакторы (альбумин, фибриноген и др.)..

Регуляция мегакариоцитопоэза осуществляется по принципу обратной связи: избыток тромбоцитов в крови тормозит тромбоцитопоэз, а тромбоцитопения его стимулирует. Основными регуляторами, стимулирующими мегакариоцитопоэз, являются ИЛ-1, ИЛ-3, ИЛ-4, ИЛ-6, ИЛ-11, фактор стволовых клеток, лейкоз-ингибирующий фактор, гранулоцитарно-макрофагальный колониестимулирующий фактор (ГМ-КСФ), гранулоцитарный колониестимулирующий фактор (Г-КСФ), эритропоэтин, тромбопоэтин. К факторам, ингибирующим тромбоцитопоэз, относят тромбоцитарный фактор 4, трансформирующий фактор роста Рр интерфероны-а и -у и другие ингибиторы.

 

Билет 4

1. Классификация нервных волокон, особенности проведения возбуждения по миелиновым и безмиелиновым волокнам. Законы проведения возбуждения по нервным волокнам.

Нервные волокна выполняют специализированную функцию — проведение нервных импульсов. По морфологическому признаку волокна делятся на миелиновые (покрытые миелиновой оболочкой) и безмиелияовые.

Нервное волокно обладает следующими свойствами; возбудимостью, проводимостью и лабильностью

Распространение возбуждения по нервным волокнам осуществляется на основе ионных механизмов генерации потенциала действия. При распространении возбуждения по безмиелиновому нервному волокну местные электрические токи, которые возникают между его возбужденным участком, заряженным отрицательно, и невозбужденными, заряженными положительно, деполяризуют мембрану до критического уровня, что приводит к генерации ПД в соседних невозбужденных участках, которые становятся возбужденными, и т.д. Этот процесс происходит в каждой точке мембраны на всем протяжении волокна. Такое проведение возбуждения называется непрерывным. Возбуждение по нервному волокну может распространяться в обе стороны от места его возникновения.

Наличие у миелиновых волокон оболочки, обладающей высоким электрическим сопротивлением, а также участков волокна, лишенных оболочки (перехватов Ранвье), приводит к тому, что местные электрические токи не могут проходить через миелин, они возникают только между соседними перехватами Ранвье, где деполяризуют мембрану невозбужденного перехвата и генерируют ПД. Возбуждение как бы «перепрыгивает» через участки нервного волокна, покрытые миелином. Такой механизм распространения возбуждения называется сальтаторным, или скачкообразным, он позволяет более быстро и экономично передавать информацию по сравнению с непрерывным проведением, поскольку о него вовлекается не вся мембрана, а только ее небольшие участки. Амплитуда ПД в 5 - 6 раз превышает пороговую величину, необходимую для возбуждения соседнего перехвата, поэтому ПД может «перепрыгивать» не только через один, но и через несколько перехватов. Это явление может наблюдаться при снижении возбудимости соседнего перехвата под действием какого-либо фармакологического вещества, например, новокаина, кокаина и др. Проведение возбуждения по нервному волокну возможно лишь в том случае, если сохранена его анатомическая и физиологическая целостность. Различные факторы, изменяющие свойства волокон (наркотические вещества, охлаждение, перевязка вт.д.), приводят к нарушению передачи возбуждения.

 

Нервные волокна по скорости проведения возбуждения делятся на три типа; А, В, С. Волокна типа А, в свою очередь, делятся на подтипы; А-а, А-р, А-у, А-5

Волокна типа А покрыты миелиновой оболочкой, Наиболее толстые из них А-а имеют диаметр 12—22 мкм и скорость проведения возбуждения 70 -120 м/с, Эти волокна проводят возбуждение от моторных нервных центров спинного мозга к скелетным мышцам (двигательные волокна) и от рецепторов мышц к соответствующим нервным центрам. Три другие группы волокон типа А (р, у, 6) имеют меньший диаметр - от 8 до 1 мкм и меньшую скорость проведения возбуждения — от 5 до 70 м/с. Волокна этих групп преимущественно проводят возбуждение от различных рецепторов (тактильных, температурных, болевых, рецепторов внутренних органов) в ЦНС, за исключением у-волокон, значительная часть которых проводит возбуждение от спинного мозга к интрафузальным мышечным волокнам.

К волокнам типа В относятся миелинизированные преганглионарные волокна вегетативной нервной системы. Их диаметр 1 — 3,5 мкм, а скорость проведения возбуждения — 3 —18м/с.

К волокнам типа С относятся безмиелиновые нервные волокна малого диаметра — 0,5—2 мкм. Скорость проведения возбуждения в этих волокнах не более 3 м/с (0,5-3 м/с). Большинство волокон типа С - это постганглионарные волокна симпатического отдела вегетативной нервной системы, а также нервные волокна, которые проводят возбуждение от болевых рецепторов, некоторых терморецепторов и рецепторов давления.

Нервные волокна обладают лабильностью (функциональной подвижностью} - способностью воспроизводить определенное количество циклов возбуждения в единицу времени в соответствии с ритмом действующих раздражителей. Мерой лабильности является максимальное количество циклов возбуждения, которое способно воспроизвести нервное волокно в соответствии с ритмом раздражения без искажений. Лабильность определяется длительиостыо потенциала действия (длительностью фазы абсолютной рефрактерности), у нервных волокон лабильность очень высокая (до 1000 Гц).

Существует три закона проведения раздражения по нервному волокну.

Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...