Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

Рефлекторная дуга соматического типа. 2 страница




 

Вторичночувствующие рецепторы – это специализированные эпителиальные клетки, которые воспринимают сенсорные сигналы, однако не имеют периферических отростков, ним подходят отростки других нейронов для передачи нервного импульса. Оно входят в состав органов слуха, равновесия и вкуса.

Оран вкуса – это совокупность вкусовых почек, которые располагаются в многослойном эпителии желобоватых, листовидных, грибовидных сосочках, иногда могут находиться на губах, на надгортаннике, на голосовых связках. Источником дифференцировки клеток вкусовых луковиц является эмбриональный многослойный эпителий сосочков. Вкусовая почка имеет эллипсоидную формую, представлена клетками: 1) Вкусовые сенсорные эпителиоциты – отделяются друг от друга поддерживающими клетками, развита агр. ЭПС, митохондрии, на апикальной части микроворсинки. Каждая почка имеет свой рецепторный белок, на передней части языка – на передней части языка сладкочувствительный, на задней части языка горькочувствительные. 2) Поддерживающие эпителиоциты – крупное ядро, развито ЭПС, АГ, есть тонофибриллы, синтезируют гликопротеиды. 3) базальные эпителиоциты – не достигают поверхности эпителиального слоя, камбиальные клетки. С возрастом число вкусовых почек уменьшается, отмечается уменьшение вкусовых порогов. Клетки вкусовой почки непрерывно обновляются, каждые десять дней. Иннервация: язычный, языкоглоточный и блуждающий нервы.

 

Орган слуха. Развитие: на 4 неделе эмбрионального развития образуется слуховой пузырек (из эктодермы), который заполнен эндолимфой. В дальнейшем он делится на две части: 1) Вестибулярная – превращается в маточку с полукружными каналами. 2) Образуется сферический мешочек, и закладка улиткового канала, который быстро растет и закручивается в спираль. Из эпителия базальной стенки улиткового канала развивается спиральный орган. С 5го месяца в кортиевом органе появляется три ряда наружных волосковых клеток и один ряд внутренних волосковых клеток.

  В костном лабиринте натянут перепончатый лабиринт, который делится на барабанную и вестибулярную лестницу и перепончатый канал. Орган слуха (кортиев орган) расположен в перепончатом канале. Стенки перепончатого канала: 1) Верхняя – вестибулярная мембрана – представлена соединительной тканью и однослойным плоским эпителием мезенхимного происхождения со стороны вестибулярной лестницы и эктодермального происхождения со стороны перепончатого канала. 2) Наружная стенка – представлена хрящевой тканью и сосудистой полоской (этот эпителий имеет сосуды). 3) Внутренняя – лимб. 4) нижняя – базилярная мембрана – соединительная ткань с коллагеновыми волокнами (струнами).

Строение спирального органа. Спиральный оран состоит из сенсорных и поддерживающих клеток. Эти клетки делятся на внутренние и наружные, границей служит туннель. 1) Внутренние сенсорные волосковые эпителиоциты – имеют стереоцилии, ядро в базальной части, много митохондрий, ЭПС и микрофиламентов. 2) Наружные сенсорные волосковые эпителиоциты – имеют стереоцилии, много ферментов, гликогена. 3)Поддерживающие эпителиоциты – располагаются на БМ: 1) внутренние наружные столбчатые эпителиоциты – образуют туннель – призматические клетки, ядро в базальной части. 2) Наружные или внутренние фаланговые (опорные эпителиоциты) – лежат под волосковыми сенсорными клетками, имеют тонкие пальцевидные отростки, ядро в базальной части. 3) Наружные пограничные эпителиоциты – располагаются рядом с наружными фаланговыми. Имеют микроворсинки, много гликогена – трофическая функция. 4) Наружные поддерживающие эпителиоциты – находятся латеральнее пограничных и переходят в эпителий выстилающую сосудистую полоску.

 

Орган равновесия. Рецепторы органа равновесия располагаются в вестибулярной части перепончатого лабиринта. Она состоит из маточки и сферического мешочка, который связан с тремя полукружными каналами, которые на месте соединения с маточкой имеют расширение – ампулу. Участки, которые содержат чувствительные (сенсорные) клетки в мешочке и в маточке называются пятнами (макулами); в ампулах – гребешками или кристами. Волосковые и сенсорные клетки: 1) грушевидные клетки - грушевидная форма, на апикальной части органеллы специального назначения – стереоцилии и одна киноцилия. К основанию клетки подходят афферентные нервные окончания (уносит импульс). 2) столбчатые клетки – призматическая форма, на апикальной части органеллы специального назначения – стереоцилии и одна киноцилия. К этим клеткам примыкают афферентные и эфферентные окончания (приносит и уносит импульс). При смещении киноцилий в сторону стереоцилий клетка возбуждается, а если движение наоборот, то происходит торможение клетки. Поддерживающие клетки располагаются между сенсорными. Темные овальные ядра, много митохондрий и микроворсинок. Развитие начинается на 4 неделе эмбрионального развития образуется слуховой пузырек (из эктодермы), который заполнен эндолимфой. В дальнейшем он делится на две части: 1) Вестибулярная – превращается в маточку с полукружными каналами. 2) Образуется сферический мешочек, и закладка улиткового канала, который быстро растет и закручивается в спираль.

 

Сердечно-сосудистая система включает сердце, кровеносные и лимфатические сосуды. Она выполняет следующие функции: 1) трофическую. 2) дыхательную. 3) экскреторную – удаление продуктов обмена из тканей. 4) интегративную – объединение всех тканей и органов. 5) регуляторную – регуляцию функций органов посредством переноса гормонов, факторов роста, цитокининов; выработки биологически активных веществ. 6) участвует в воспалительных и иммунных реакциях. Сердце выполняет роль мышечного насоса, обеспечивающего ритмическое поступление крови в сосудистую систему. Это достигается мощным развитием сердечной мускулатуры и наличием особых клеток – водителей ритма.

 

Классификация сосудов. Кровеносные сосуды представляют собой систему замкнутых трубок различного диаметра, осуществляющих транспортную функцию, регуляцию кровоснабжения органов и обмен веществ между кровью и окружающими тканями. В кровеносной системе различают артерии, артериолы, гемокапилляры, венулы, вены и артериоловенулярные анастомозы. До середины ХХ века в ангиологии гемокапилляры считались единственным связующим звеном между артериями и венами. Однако, как выяснилось, взаимосвязь между артериями и венами осуществляется системой сосудов микроциркуляторного русла, включающей не только капилляры, но и мельчайшие артерии, вены, и артериоловенулярные анастомозы. По артериям кровь от сердца течет к органам. Как правило, эта кровь насыщена кислородом, за исключением легочной артерии, несущей венозную кровь. По венам кровь притекает к сердцу и содержит мало кислорода, кроме крови в легочных венах. Гемокапилляры соединяют артериальное звено кровеносной системы с венозным звеном, кроме так называемых чудесных сетей, в которых капилляры находятся между двумя одноименными сосудами (например, в клубочках почки).

 

 

Иннервация сосудов. Сосуды снабжаются ветвями вегетативной нервной системы, они сопровождают сосуды и заканчиваются в их стенке. Нервы могут быть миелиновыми и безмиелиновыми. Чувствительные нервные окончания артериол обладают большой протяженностью и поливалентностью. Рецепторы на венулах кустикообразно ветвятся, капилляров многообразны по форме. Артериоловенулярные анастомозы имеют сложные рецепторы, расположенные одновременно на анастомозе, артериоле, венуле. Эффекторные нервные волокна заканчиваются на гладких мышечных клетках маленькими утолщениями. Регенерация. Кровеносные и лимфатические сосуды обладают высокой способностью к регенерации, восстановление поврежденного сосуда начинается с деления эндотелиоцитов. Мышечные клетки, как правило, восстанавливаются более медленно и неполно путем деления миоцитов и дифференцировки миофибробластов. Эластические элементы развиваются слабо. Лимфатические сосуды после их повреждения регенерируют несколько медленнее, чем кровеносные. Регенерация лимфатических сосудов может происходить за счет или почкования дистальных концов эндотелиальных трубок, или перестройки лимфатических капилляров в отводящие сосуды.

 

Кровеносные сосуды представляют собой систему замкнутых трубок различного диаметра, осуществляющих транспортную функцию, регуляцию кровоснабжения органов и обмен веществ между кровью и окружающими тканями.

Развитие. Первые кровеносные сосуды появляются в стенке желточного мешка и в хорионе на 2-3 неделе эмбрионального развития. Вслед за ними возникают сосуды в мезенхиме зародыша. К концу 3 недели появляется желточное и первичное аллантоисное кровообращение. Дальнейшее развитие стенки сосудов происходит после начала циркуляции крови под влиянием тех гемодинамических условий (кровяное давление, скорость кровотока), которые создаются в различных частях тела. В период эмбриональных перестроек часть первичных сосудов запустевает и редуцируются, другие превращаются в артерии и вены, капилляры же возникают заново, путем почкования. Развитие артерий опережает развитие вен.

Сосуд состоит из 3х оболочек: 1) Внутренняя оболочка – образованна эндотелием, субэндотелиальным слоем, внутренней эластической мембраной. 2) Средняя оболочка – слои гладкомышечных клеток и сеть коллагеновых, ретикулярных, эластических волокон. 3) Адвентиция – наружная эластическая мембрана и рыхлая волокнистая соединительная ткань, содержащие нервы и сосуды сосудов.

 

Артерии. По особенностям строения артерии бывают 3х типов: мышечного, эластического, смешанного. Стенка всех артерий состоит из 3х оболочек: внутренней, средней и наружной. Артерии несут кровь богатую кислородом, от сердца к тканям.

Артерия мышечного типа. 1) Внутренняя оболочка. Состоит из эндотелия, субэндотелиального слоя (рыхлая волокнистая соединительная ткань), внутренняя эластическая мембрана – сплетение волокон. 2) Средняя оболочка. Наиболее толстая, циркулярно расположены гладкомышечные клетки, сеть коллагеновых, ретикулярных, эластических волокон (преобладают). 3) Наружная оболочка или адвентиция образована наружной эластической мембраной и рыхлой волокнистой соединительной тканью.

Артерии эластического типа характеризуются большим просветом и относительно тонкой стенкой с мощным развитием эластических элементов. Это аорта и легочная артерия, в которых кровь движется с высокой скоростью и под большим давлением. 1) Внутренняя оболочка. Толстая, представлена эндотелием и субэндотелиальным слоем с высоким содержание эластических волокон. Внутренняя эластическая мембрана выражена неотчетливо. 2) Средняя оболочка. Образована толстыми пучками эластических волокон, есть также гладкомышечные клетки. 3) Наружная оболочка или адвентиция. Представлена рыхлой волокнистой соединительной тканью с большим количеством коллагеновых и эластических волокон.

Артерия мышечно-эластического типа. В ее стенке хорошо представлены как эластические, так и мышечные элементы.

Возрастные особенности. С возрастом происходит разрастание соединительной ткани в артериях эластического типа. Во внутренней оболочке артерий утолщаются коллагеновые волокна, и сама оболочка становится толстой. Внутренняя эластическая с возрастом истончается и расщепляется, мышечные клетки атрофируются, эластические волокна распадаются, появляются известковые отложения.

 

Микроциркуляторное русло – это система мелких сосудов, включающая артериолы, гемокапилляры, венулы, а также артериоловенулярные анастомозы. Этот функциональный комплекс кровеносных сосудов, окруженный лимфатическими капиллярами и лимфатическими сосудами, вместе с окружающей соединительной тканью обеспечивает регуляцию кровенаполнения органов, транскапиллярный обмен и дренажно-депонирующую функцию. Сосуды микроциркуляторного русла пластичны при изменении кровотока. Они могут депонировать форменные элементы или быть спазмированы и пропускать лишь плазму, изменять проницаемость для тканевой жидкости.

 

Артериолы. Артериолы – это мелкие артериальные сосуды мышечного типа диаметром от 50-100 мкм. С одной стороны они связаны с артериями, с другой постепенно переходят в капилляры. В артериолах сохраняются 3 оболочки, характерные для артерии вообще, однако выражены они очень слабо. Внутренняя оболочка – образована эндотелием с БМ. Его отростки проникают сквозь очень тонкую фенестрированную внутреннюю эластическую мембрану и образует контакты с гладкими миоцитами средней оболочки. Средняя оболочка представлена одним или двумя слоями гладкомышечных клеток, имеющих спиралевидное направление. В прекапиллярных артериолах гладкие миоциты располагаются по одиночке. Между мышечными клетками артериол обнаруживается небольшое количество эластических волокон. Наружная эластическая мембрана отсутствует. Наружная оболочка представлена рыхлой волокнистой соединительной тканью. Артериолы являются кранами сосудистой системы, которые регулируют приток крови к органам благодаря сокращению спирально направленных гладких мышечных клеток.

 

Капилляры. Кровеносные капилляры – наиболее многочисленные и тонкие сосуды, диаметром от 3 до 12 мкм. В стенки капилляров различают три тонких слоя. Внутренний слой представлен эндотелиальными клетками, расположенными на БМ, средний состоит из перицитов, заключенных в БМ, а наружный – из адвентициальных клеток и тонких коллагеновых волокон, погруженных в аморфное вещество. По структурно-функциональным особенностям капилляры подразделяют на три типа: 1) Капилляры с непрерывной капиллярной выстилкой – эндотелиоциты связаны плотными щелевыми контактами, БМ непрерывна, имеется большое число перицитов (соединительнотканные клетки, отросчатая форма, регулируют изменения просвета капилляра). Капилляры встречаются в мышцах, соединительной ткани, легких, ЦНС, тимусе, селезенке, экзокринных железах. 2) Фенестрированные капилляры – тонкий эндотелий, в нем имеются поры, которые затянуты диафрагмой, БМ непрерывна, мало перицитов. Имеются в почечном тельце, эндокринных органах, слизистой оболочки желудочно-кишечного тракта. 3) Синусоидные капилляры – имеют крупные межклеточные трансцеллюлярные поры, БМ прерывистая, имеются в печени, селезенке, костном мозге, коре надпочечника. Кровеносные капилляры осуществляют основные обменные процессы между кровью и тканями, а в некоторых органах (легких) участвуют в газообмене между кровью и воздухом. Тонкость стенок капилляров, огромная площадь их соприкосновения с тканями, медленный кровоток, низкое кровяное давление обеспечивают наилучшие условия для обменных процессов. Гистогематический барьер – барьер между кровью и тканями. В его состав входят: эндотелий капилляров, его БМ и тканевые компоненты. Гламерулярнофильтрационный барьер: фенестрированный эндотелий, трехслойная БМ и подоцит – клетка висцерального листка капсулы почечного тельца. Плацентарный барьер: эндотелий капилляров, БМ, соединительная ткань ворсинки, БМ, трофобласт.

 

Венулы. Различают три разновидности: посткапиллярные, собирательные и мышечные. Посткапиллярные венулы – сосуды диаметром 12-30 мкм, образующиеся в результате слияния нескольких капилляров. Эндотелиальные клетки могут быть фенестрированными; в органах иммунной системы имеются поскапиллярные венулы с особым высоким эндотелием, который служит местом выхода лимфоцитов из сосудистого русла. Перициты встречаются чаще, чем в капиллярах, мышечные клетки отсутствуют. Собирательные венулы диаметром 30-50 мкм образуются в результате слияния посткапиллярных венул. Когда они достигают диаметра 50 мкм, в их стенке появляются гладкомышечные клетки и более четко выражена наружная оболочка. Мышечные венулы (диаметр до 100 мкм) характеризуется хорошо развитой средней оболочкой, в которой в один ряд лежат гладкомышечные клетки; и сравнительно хорошо развитую наружную оболочку. Венозный отдел микроциркуляторного русла вместе с лимфатическими капиллярами выполняет дренажную функцию, регулируя гематолимфатическое равновесие между кровью и внесосудистой жидкостью, удаляя продукты метаболизма тканей. Через стенки венул, также как через капилляры, мигрируют лейкоциты. Медленный кровоток, низкое кровяное давление, растяжимость этих сосудов создают условия для депонирования крови.

 

Артериоловенулярные анастомозы (АВА) – это соединения сосудов, несущих артериальную кровь в вены в обход капиллярного русла. Они обнаружены почти во всех органах. АВА способны к сокращениям в 2-12 раз в минуту. Классификация АВА.

1) Истинные АВА или шунты. По ним сбрасывается чистая артериальная кровь. Шунты могут иметь различную внешнюю форму – прямые короткие соустья, петли, ветвящиеся соединения. По строению они подразделяются на: а) Простые АВА – граница перехода одного сосуда в другой соответствует участку, где заканчивается средняя оболочка артериолы. Регуляция кровотока осуществляется гладкими мышечными клетками средней оболочки самой артериолы. б) АВА, снабженные специальными сократительными структурами. Анастомозы могут иметь специальные сократительные устройства в виде валиков или подушек в подэндотелиальном слое, образованные продольно расположенными гладкими мышечными клетками. Их сокращение приводит к прекращению кровотока. 2) Атипичные АВА, по которым течет смешанная кровь. Атипичные анастомозы – представляют собой соединения артериол и венул, посредством короткого сосуда капиллярного типа. Поэтому сбрасываемая в венозное русло кровь является не полностью артериальной.

Соединения артериальной и венозной систем без посредства капилляров имеют большое значение для регуляции тока крови через орган и для регуляции кровяного давления. Эти соединения играют определенную роль для стимуляции венозного кровотока, мобилизации депонированной крови и регуляции тока тканевой жидкости в венозное русло. Велика роль АВА в компенсаторных реакциях организма при нарушении кровообращения и развитии патологических процессов.

Вены составляют отводящее звено сосудистой системы. Низкое кровяное давление и незначительная скорость кровотока определяют сравнительно слабое развитие эластических элементов в венах и большую растяжимость их. Количество же гладких мышечных клеток в стенке вен неодинаково и зависит от направления кровотока. Во многих венах имеются клапаны, являющиеся производными внутренней оболочки. По степени развития мышечных элементов в стенке вен они разделены на две группы: Вены безмышечного типа и вены мышечного типа. Вены мышечного типа делятся на вены со слабым, средним и сильным развитием мышечных элементов.

Вены безмышечного типа: Безмышечные вены твердой и мягкой мозговых оболочек, вены сетчатки глаза, костей, селезенки и плаценты. Состоит из эндотелиальных клеток. Снаружи к ним присоединяется БМ, а затем тонкий слой рыхлой волокнистой соединительной ткани, срастающейся с окружающими тканями.

Мышечные вены со слабым развитием мышечных элементов – это мелкие и средние вены верхней части тела. По ним кровь движется пассивно вследствие своей тяжести. Эндотелий, слаборазвитый субэндотелиальный слой, в средней оболочке небольшое количество гладкомышечных клеток, лежащих группами, адвентиция, рыхлая волокнистая соединительная ткань с единичными гладкомышечными клетками. Мышечные вены со средним развитием мышечных элементов – во внутренней и наружной оболочке присутствуют единичные гладкомышечные клетки. В средней оболочке – циркулярно расположенные пучки гладкомышечных клеток. Могут имеется клапаны – карманы, свободные края которых направлены к сердцу, они препятствуют обратному току крови, способствуют продвижению крови при сокращении мышц. Мышечные вены с сильным развитием мышечных элементов – крупные вены нижних отделов тела. Во внутренней и наружной оболочке продольные пучки гладкомышечных клеток, в средней оболочке крупные циркулярно расположенные пучки гладких миоцитов. Имеются многочисленные клапаны.

 

Виды кардиомиоцитов. 1) Сократительные кардиомиоциты. Образуют основную часть миокарда. Содержат 1-2 ядра в центральной части и миофибриллы по периферии; соединены друг с другом вставочными дисками и образуют анастомозы. Их форма в желудочках цилиндрическая, в предсердиях неправильная, отросчатая. 2) Проводящие кардиомиоциты. Обеспечивают ритмическое координированное сокращение сердца благодаря способности к генерации и быстрому проведению импульсов. Образование импульса происходит в синусном узле, откуда он передается в предсердия и атриовентрикулярный узел. Там импульс задерживается на 0, 04 с., после чего быстро распространяется по атриовентрикулярному пучку Гиса и его ветвям к рабочим кардиомиоцитам желудочков. Три типа проводящих кардиомиоцитов: 1) Р-клетки. Отросчатые, с крупными ядрами. Эти клетки встречаются в синусом узле и в межузловых путях. Они - главным источник импульсов, обеспечивающие ритмическое сокращение сердца. 2) Переходные клетки. Занимают промежуточное положение между Р-клетками и сократительными кардиомиоцитами. Встречаются преимущественно в узлах, но проникают и в прилежащие участки предсердий. 3) Клетки Пуркинье. Лежат пучками. Эти клетки численно преобладают в пучке Гиса и его ветвях, встречаются по периферии узлов. 3) Секреторные кардиомиоциты. Располагаются в предсердиях. Это клетки отросчатой формы с развитым синтетическим аппаратом. В цитоплазме располагаются плотные гранулы, содержащие гормон – предсердный натриуретический фактор (ПНФ) – это пептид. Попав в кровь, ПНФ идет к почкам, надпочечникам, головному мозгу и вызывает стимуляцию диуреза, натриуреза, расширение сосудов, снижение АД.

 

Строение сердца. В стенке сердца различают три оболочки: внутренняя – эндокард, средняя – миокард, наружная – эпикард. Эндокард выстилает изнутри камеры сердца, а также клапаны сердца. Он толще в левых камерах сердца. Эндокард выстлан эндотелием, который лежит на толстой БМ. Подэндотелиальный слой образован соединительной тканью. Мышечно-эластический слой – эластические волокна переплетаются с гладкими мышечными клетками. Эластические волокна гораздо лучше выражены в эндокарде предсердий, чем в желудочках. Наружный соединительнотканный слой – лежит на границе с миокардом. Состоит из соединительной ткани, содержащей толстые эластические, коллагеновые и ретикулярные волокна, сосуды. Питание эндокарда осущ. диффузно за счет крови, находящейся в камерах сердца. Миокард – мышечная оболочка сердца, состоит из кардиомиоцитов, которые являются структурно-функциональной единицей сердечной мышечной ткани. Они бывают 3х видов: 1) сократительные. 2) проводящие – генерируют и проводят нервный импульс – водители ритма. 3) секреторные – в области предсердий, секретируют предсердный натриуретический фактор. Кардиомиоциты сообщаются в области вставочных дисков. Эпикард – наружная оболочка сердца, представляет собой висцеральный листок перикарда. Образован тонкой пластинкой соединительной ткани, плотно срастающейся с мышечным слоем. Свободная поверхность покрыта мезотелием. В соединительнотканной основе эпикарда различают слои коллагеновых и эластических волокон. Между эпикардом и перикардом имеется щелевидное пространство, содержащее небольшое количество жидкости, выполняющей роль смазки. В перикарде соединительнотканная основа развита сильнее. Поверхность перикарда, обращенная к перикардиальной полости, тоже покрыта мезотелием. Эпикард и перикард имеет многочисленные нервные окончания. В эпикарде присутствует также и жировая ткань.

 

Лимфатические сосуды. Лимфатическая система включает в себя лимфатические сосуды и лимфатические узлы. В функциональном отношении лимфатические сосуды тесно связаны с кровеносными, особенно в области расположения сосудов микроциркуляторного русла. Здесь происходит образование тканевой жидкости и проникновение ее в лимфатическое русло. Через мелкие лимфоносные пути осуществляется постоянная миграция лимфоцитов из кровотока и из лимфатических узлов в кровь. Среди лимфатических сосудов различают: лимфатические капилляры, интра- и экстраорганные лимфатические сосуды, отводящие лимфу от органов, и главные лимфатические стволы тела – грудной проток и правый лимфатический проток, впадающие в крупные вены шеи. По строению различают лимфатические сосуды безмышечного и мышечного типов.

Лимфатические капилляры – начальные отделы лимфатической системы, в которые из тканей поступает тканевая жидкость вместе с продуктами обмена веществ. Лимфатические капилляры представляют собой замкнутых с одного конца трубок, анастомозирующих друг с другом и пронизывающих орган где они сопровождают гемокапилляры. Диаметр лимфатических капилляров больше, чем кровеносных. Стенка лимфатических капилляров состоит из эндотелиальных клеток. БМ и перициты в лимфатических капиллярах отсутствуют. Эндотелий связан с окружающей соединительной тканью с помощью стопных или фиксирующих филаментов. Лимфатические капилляры и начальные отделы отводящих лимфатических сосудов обеспечивают гематолимфатическое равновесие как необходимое условие микроциркуляции в здоровом организме. Отводящие лимфатические сосуды имеют отличительную особенность – имеют клапаны и хорошо развитую наружную оболочку, низкое давление и направленный ток жидкости от органов к сердцу. Лимфатические сосуды в зависимости от диаметра подразделяются на мелкие, средние и крупные. По своему строению могут быть безмышечными и мышечными. В мелкие сосуды (30-40 мкм) – это внутриорганные лимфатические сосуды, их стенка состоит из эндотелия и соединительнотканной оболочки. Средние и крупные лимфатические сосуды имеют 3 хорошо развитые оболочки: 1) внутренняя оболочка. Покрыта эндотелием, есть пучки коллагеновых и эластических волокон. Много клапанов, которые состоят из соединительнотканной пластинки, покрытой эндотелием, в толще которой находятся гладкие миоциты. На границе внутренней и средней оболочек лежит внутренняя эластическая мембрана. 2) Средняя оболочка. В стенке находятся пучки гладких миоцитов, имеющие циркулярное и косое направление. Много эластических волокон. 3) Наружная оболочка образована рыхлой волокнистой неоформленной соединительной тканью, которая переходит в окружающую соединительную ткань. Могут встречаться гладкие мышечные клетки. Грудной лимфатический проток – выделяются три слоя. Внутренняя и средняя оболочки выражены относительно слабо. В средней оболочке пучки эластических волокон и пучки гладких миоцитов. Наружная оболочка содержит пучки гладких миоцитов, разделенные прослойками соединительной ткани. До 9 полулунных клапанов.

Васкуляризация. Венечные артерии имеют плотный эластический каркас, в котором четко выделяются внутренняя и наружная эластические мембраны. Гладкие мышечные клетки в артериях обнаруживаются в виде продольных пучков во внутренней и наружной оболочках. Проводящая система обильно снабжена кровеносными сосудами. Лимфатические сосуды в эпикарде сопровождают кровеносные. В миокарде и эндокарде они проходят самостоятельно и образуют густые сети. В эпикарде и перикарде находятся сплетения сосудов микроциркуляторного русла.

Иннервация. В стенке сердца обнаруживается несколько нервных сплетений и ганглиев. Больше всего сплетений в стенке правого предсердия и синусо-предсердного узла проводящей системы. Рецепторные окончания в стенке сердца образованы нейронами ганглиев блуждающих нервов и нейронами спинномозговых узлов. Эффекторная часть рефлекторной дуги образована нервными волокнами холинергических нейронов, которые находятся в сердечных ганглиях и получают импульсы от продолговатого мозга.  Эффекторная часть рефлекторной дуги представлена нервными волокнами, которые находятся среди кардиомиоцитов и по ходу сосудов органа. Адренергические эффекторные нервные волокна представлены симпатической НС, на них заканчиваются симпатические волокна ядер боковых рогов спинного мозга. В состав ганглиев сердца входят малые интенсивно флюоресцирующие клетки – МИФ-клетки. Они рассматриваются как вставочные нейроны, т. к. на их телах найдены окончания адренергических и холинергических нейронов сердца. МИФ-клетки выделяют свои медиаторы в кровь.

 

Возрастные изменения. В течение онтогенеза можно выделить три периода изменения гистоструктуры сердца: период дифференцировки, период стабилизации и период инволюции. Дифференцировка начинается в эмбриональном периоде и длится до 20 лет. Сердечные миоциты обогащаются саркоплазмой, в результате чего их ядерно-цитоплазматическое отношение уменьшается. Количество миофибрилл прогрессивно увеличивается. Наблюдается постепенное уменьшение количества ретикулярных волокон и замена их на коллагеновые. В период между 20 и 30 годами сердце человека находится в стадии стабилизации. В возрасте старше 30-40 лет в миокарде увеличивается количество соединительной ткани, в эпикарде появляются адипоциты.

Регенерация. У новорожденных кардиомиоциты еще способны к делению, и регенерация сопровождается увеличением количества кардиомиоцитов. У взрослых физиологическая регенерация осуществляется в миокарде путем внутриклеточной регенерации, без увеличения числа клеток.

 

Проводящая система сердца. Представляет собой мышечные клетки, формирующие и проводящие импульсы к сократительным клеткам сердца. В состав проводящей системы входят: синусно-предсердный узел, предсердно-желудочковый узел, предсердно-желудочковый пучок и его разветвления, передающие импульсы на сократительные мышечные клетки.

Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...