Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

H.245 сигнализация управления




H.245-сигнализация управления состоит из сквозного обмена H.245-сообщеними между H.323-оконечными точками. H.245-сообщения управления передаются через H.245-каналы управления. H.245-канал управления представляет из себя логический канал, который постоянно открыт, в отличие от каналов обмена мультимедиа потоков. Сообщения сигнализации управления можно разделить на две группы: обмен терминалов H.323 своими параметрами и сообщения управления.

Сообщения обмена параметрами:

Обмен параметрами позволяет терминалам выбрать такие режимы обмена данными и форматы кодирования, которые они могут использовать при совместной работе друг с другом. Уточняются возможности терминалов: как на прием, так и на передачу.

Сообщения управления процессами логическими каналами между конечными точками:

Логический канал несет информацию от одной оконечной точки до другой оконечной точки (в случае двухточечной конференции) или множественных оконечных точек (в случае отметки на многоточечную конференцию). Протокол H.245 предоставляет набор сообщений, обеспечивающих открытие и закрытие этих каналов. Логический канал всегда однонаправлен.

 

Мультимедиа шлюз (Gateway).

Представляет из себя устройство, предназначенное для преобразования мультимедийной и управляющей информации при сопряжении разнородных сетей. (Рис. 4.2)

 

Рисунок 4.2. Шлюз H.323/PSTN

Шлюз не входит в число обязательных компонентов сети H.323. Он необходим только в том случае, когда требуется установить соединение с терминалом другого стандарта. Эта связь обеспечивается трансляцией протоколов установки и разрыва соединений, а также форматов передачи данных. Согласно H.323, мультимедиа шлюз - это опциональный элемент в конференции H.323. Он может выполнять много различных функций. Типичной его функцией, например, является задача преобразования форматов протоколов передачи (например, H.225.0 и H.221). Шлюзы H.323 широко применяются в IP-телефонии для сопряжения IP-сетей и цифровых или аналоговых коммутируемых телефонных сетей (ISDN или PSTN). При отсутствии в сети шлюзадолжна быть обязательно реализована одна из функций шлюза - преобразование номера ТфОП в транспортный адрес IP-сети с помощью других средств. Со стороны сетей с маршрутизацией пакетов IP, так же, как и со стороны ТфОП, шлюз может участвовать в соединениях в качестве терминала или устройства управления конференциями


Контроллер управления многоточечными конференциями (Multipoint Control Unit - MCU) - предназначен для организации конференций с участием трех и более участников. В этом устройстве должен присутствовать контроллер Multipoint Controller (MC), и, возможно, процессоры Multipoint Processors (MP). Контроллер MC поддерживает протокол Н.245 и предназначен для согласования параметров обработки аудио- и видеопотоков между терминалами. Процессоры занимаются коммутированием, микшированием и обработкой этих потоков.

Конфигурация многоточечной конференции может быть централизованной, децентрализованной, гибридной и смешанной.


Рисунок 4.3. Схемы централизованной и децентрализованной организаций конференции в H.323

 

Централизованная многоточечная конференция требует наличия устройства MCU. Каждый терминал обменивается с MCU потоками аудио, видео, данными и командами управления по схеме "точка-точка". Контроллер MCU, используя протокол H.245, определяет возможности каждого терминала. Процессор MP формирует необходимые для каждого терминала мультимедийные потоки и рассылает их. Кроме того, процессор может обеспечивать преобразования потоков от различных кодеков с различными скоростями данных.
Децентрализованная многоточечная конференция использует технологию групповой адресации. Участвующие в конференции H.323 терминалы осуществляют многоадресную передачу мультимедиа потока остальным участникам без посылки на MCU. Передача контрольной и управляющей информации осуществляется по схеме "точка-точка" между терминалами и MCU. В этом случае контроль многоточечной рассылки осуществляется контроллером MCU.
Гибридная схема организации конференцсвязи является комбинацией двух предыдущих. Участвующие в конференции H.323 терминалы осуществляют многоадресную передачу только аудио- или только видеопотока остальным участникам без посылки на MCU. Передача остальных потоков осуществляется по схеме "точка-точка" между терминалами и MCU. В этом случае задействуются как контроллер, так и процессор MCU.

Рисунок 4.4. Схемы децентрализованной и смешанной организаций конференции в H.323

 

В смешанной схеме организации конференцсвязи одна группа терминалов может работать по централизованной схеме, а другая группа - по децентрализованной.

 

Контроллер зоны (или Gatekeeper) - рекомендуемое, но не обязательное устройство, обеспечивающее сетевое управление и исполняющее роль виртуальной телефонной станции.

Контроллер зоны обеспечивает услуги управления вызовами для H.323-оконечных точек, типа трансляции адреса и управления шириной полосы пропускания в соответствии с протоколом RAS. Контроллер зоны в H.323 сети не обязательный компонент. Однако если он присутствует в сети, то терминалы, и шлюзы должны использовать его услуги. H.323-стандарт определяет как обязательные услуги контроллера зоны, так и дополнительные (факультативные) функциональные возможности, которые он может обеспечивать.

Факультативной возможностью контроллера зоны является маршрутизация сигналов вызова. Оконечные точки посылают сообщения сигналов вызова контроллеру зоны, который направляет их к оконечным точкам адресатов. Поочередно, оконечные точки могут посылать сообщения сигнализации вызова непосредственно друг другу. Эта возможность ценна для текущего контроля обращений и управления обращениями в сети. Маршрутизация обращений через контроллер зоны обеспечивает лучшую эффективность работы сети, поскольку контроллер может принимать решения о маршрутизации, основанных на ряде факторов, например, балансировке загрузки среди шлюзов.

Услуги, предлагаемые контроллером зоны определены в RAS, и включают трансляцию адреса, управление приёмами, управление шириной полосы частот, и зональное управление. H.323-сети, не имеющие контроллер шлюза не имеют этих возможностей. H.323-сети, содержащие IP-телефоны и шлюзы должны обязательно содержать контроллер зоны, чтобы транслировать входящие E.164-телефонные адреса в транспортные адреса. Контроллер зоны - логический компонент H.323, но он может быть выполнен и как часть шлюза.

Обязательные функции контроллера зоны:

- трансляция адреса;

Вызов, порожденный внутри H.323-сети может использоваться для адресования нужного терминала с помощью его псевдонима (краткого названия). Вызов, порожденный вне H.323-сети и полученный через шлюз для адресования терминалу получателя может использовать номер телефона в соответствии с рекомендацией E.164 (например, 310-442-9222). Данная рекомендация используется для адресования абонентов сети ISDN. Контроллер зоны преобразует полученный E.164-номер телефона или псевдоним в сетевой адрес (например, 204.252.32.456 для IP-сети) терминала адресата. Оконечная точка адресата может быть достигнута, с использованием этого сетевого адреса.

- управление регистрацией;

Контроллер зоны может управлять регистрацией оконечных точек в H.323-сети. При этом используются RAS-сообщения: запрос регистрации (ARQ), подтверждение (ACF), и отклонение (ARJ). Управление регистрацией может быть фиктивной функцией, которая допускает все оконечные точки к H.323-сети.

- управление полосой пропускания.

Контроллер обеспечивает управление полосой пропускания, используя RAS-сообщения: запрос ширины полосы пропускания (BRQ), подтверждение (BCF), и отклонение (BRJ). Например, если сетевой диспетчер определил порог для числа одновременных соединений для H.323-сети, контроллер зоны может отказываться устанавливать новые соединения, если только этот порог достигнут. В результате имеется возможность ограничивать общее значение распределенной полосы пропускания некоторой частью общей полосы сети передачи данных, оставляя остающуюся ширину полосы пропускания для приложений передачи данных. Управление полосой пропускания может также быть фиктивной функцией, которая просто получает запросы без их обработки.

- факультативные функции контроллера зоны:

Управление вызовами.

Контроллер зоны может маршрутизировать вызовы между H.323-оконечными точками. В двухточечной конференции, контроллер зоны может обрабатывать H.225 сообщения сигналов вызовов. В качестве альтернативы, контроллер зоны может разрешать оконечным точкам самостоятельный обмен H.225 сообщениями сигналов вызовов непосредственно друг с другом.

Авторизация вызова.

Когда оконечная точка посылает сообщения вызова контроллеру зоны, он, в соответствии со стандартом H.225, может принимать или отклонять вызов. Причинами для отклонения могут быть ограничения по доступу или времени, заданные для конкретных терминалов или шлюзов.

Управление вызовом.

Контроллер зоны может отслеживать данные относительно всех активных H.323-соединений, что позволяет управлять зоной, обеспечивая контроль ширины полосы пропускания и обеспечивать балансировку загрузки сети за счет перенаправления вызовов между терминалами и шлюзами.

 

Процедура соединения по H.323.

Рассмотрим по шагам сценарий установления соединения между двумя терминалами H.323 без использования контроллера зоны (рис. 4.6):

1. Оконечный пункт A (вызывающая сторона) соединяется с оконечным пунктом B (вызываемая сторона) и посылает сообщение Setup (установка, как определено в H.225.0), включающее тип вызова (например, только звуковые сигналы), номер вызываемой и вызывающей стороны и адрес.

 

 

Рисунок. 4.5.Сценарий установки соединения по протоколу H.323

 

2. Оконечный пункт B откликается сообщением уведомления (Alerting). Оконечный пункт A должен принять это сообщение прежде, чем истечет время, отведенное на установку.

3. Когда пользователь в оконечном пункте B отвечает на вызов (снимает трубку), сообщение Connect (соединение) передается в оконечный пункт A.

4. Оба терминала передают информацию о своих возможностях (типы среды, выбор кодека и информация о мультиплексировании) в сообщении TerminalCapabilitySet (установка возможностей терминала).

5. Каждый терминал отвечает сообщением TerminalCapabilitySetAck (подтверждение установки возможностей терминала). В случае если удаленный оконечный пункт не обладает какими-то возможностями, будет передано сообщение TerminalCapabilitySetReject (отклонение установки возможностей терминала), и терминалы продолжат передавать эти сообщения, пока не определят, что устанавливаемые возможности поддерживаются обоими оконечными пунктами.

6. Каждый терминал передает сообщение H.245 OpenLogicalChannel (открыть логический канал), чтобы открыть логический канал с удаленным оконечным пунктом, чтобы настроить речевые каналы, по которым будет производиться обмен мультимедийными потоками.

7. В случае готовности к приемке данных каждый терминал передает OpenLogicalChannelAck (подтверждение открытия логического канала) в удаленный оконечный пункт, определяя номер порта, на который удаленному оконечному пункту следует передавать данные RTP, и номер порта, на который следует передавать данные RTCP удаленному оконечному пункту.

8. Оконечные пункты обмениваются информацией в пакетах RTP. Во время этого обмена передаются пакеты RTCP для контроля качества передачи данных.

9. Когда оконечный пункт A дает отбой (вешает трубку), он должен передать сообщение H.245 CloseLogicalChannel (закрыть логический канал) для каждого канала, открытого с оконечным пунктом B.

10. Оконечный пункт B отвечает сообщением CloseLogicalChannelAck (подтверждение закрытия логического канала).

11. Оконечный пункт A посылает команду H.245 EndSessionCommand (команда завершения сеанса) и закрывает канал после приема такого же сообщения от оконечного пункта B.

12. Оба терминала посылают сообщение H.225.0 ReleaseComplete (освобождение завершено) по каналу сигнализации вызова, которое закрывает канал и завершает соединение.

4.4. Характеристики шлюзов IP-телефонии

 

В общем случае IP-телефония опирается на две основных операции: преобразование двунаправленной аналоговой речи в цифровую форму внутри кодирующего/декодирующего устройства (кодека) и упаковку в пакеты для передачи по IP-сети. Эти функции чаще всего выполняют автономные шлюзы, которые имеют несколько разновидностей. Это могут быть выделенные устройства или совмещенные маршрутизаторы/коммутаторы со встроенным аппаратным и программным обеспечением шлюза. Другой тип – когда шлюз объединен с оборудованием удаленного доступа и пулом модемов.

Независимо от способа аппаратной реализации шлюзы IP-телефонии должны обладать рядом необходимых свойств:

 

- совместимость со стандартом H.323.

Базовым протоколом для работы IP-оборудования подавляющим большинством производителей был принят протокол, описанный МСЭ-Т в рекомендации H.323v2, стандартизирующей мультимедийную связь в сетях с коммутацией пакетов.

Пользователи мультимедийных персональных компьютеров с программным обеспечением H.323 могут подключиться к такой системе шлюзов. Вызовы при этом могут быть направлены на поддерживающие H.323 шлюзы других производителей. В результате данная система будет обеспечивать интеграцию речи, видео и данных в реальном масштабе времени, например Microsoft NetMeeting.

 

Рисунок 4.6. Положение шлюза в сети IP-телефонии

 

- наличие механизмов резервирования ресурсов.

Поддержка какой-либо схемы приоритезации (протокол резервирования RSVP или байт дифференциации услуг — DS byte) для осуществления возможности выбора приоритета между передаваемой речью или данными является важной характеристикой шлюза. При этом протокол RSVP позволяет маршрутизаторам резервировать часть полосы пропускания для организации голосового трафика.

 

- поддержка основных телефонных интерфейсов и типов сигнализаций.

Важными критериями при оценке характеристик шлюзов является возможно большое разнообразие телефонных интерфейсов, поддерживаемых IP-шлюзом (E1, PRI, BRI) и аналогового в частности, а также поддержка основных типов телефонной сигнализации: CAS, DTMF, PRI и ОКС №7. Существенную роль играет поддержка оборудованием механизмов безопасности в соответствии с упомянутой Рекомендацией Н.235.

 

- транспортные архитектуры.

Диапазон транспортных архитектур, с которыми работают современные шлюзы, достаточно широк: выделенные линии, ISDN, Frame Relay, ATM, Ethernet.

 

- масштабируемость.

Важной характеристикой шлюза является его масштабируемость, что обеспечивается модульным построением оборудования. На первом этапе развертывания сети IP-телефонии возможно использование неполного ресурса имеющихся портов при постепенном дальнейшем увеличении числа задействованных голосовых портов. При этом число портов соответствует количеству одновременных вызовов, которые может сделать шлюз, поскольку каждый его порт оснащен собственным цифровым сигнальным процессором (DSP — Digital Signal Processor) для оцифровки голосовых сигналов.

 

- обеспечение факс-связью.

Подавляющее большинство производимых шлюзов имеют возможность обеспечивать факсимильную, связь на базе протокола IP. Она опирается на два основных стандарта, предложенных МСЭ-Т. Стандарт Т.37 сводит передачу факсов к доставке с промежуточным хранением, так как изображения факсов передаются в виде вложений электронной почты. Благодаря Т.37 факс-аппараты и факс-серверы могут взаимодействовать друг с другом так же согласованно, как и традиционные факсы. Еще один стандарт Т.38 описывает передачу факсов в реальном масштабе времени либо посредством имитации соединения с факс-аппаратом, либо с помощью метода модуляции под названием FaxRelay. Т.38 может использоваться для реализации функциональности, более схожей с традиционной факсимильной связью, например для немедленного подтверждения.

 

 

- управление шлюзом.

Шлюзы могут отличаться предусмотренными средствами управления. Данные средства управления имеют своей функцией маршрутизацию вызовов между шлюзами и перекодировки телефонных номеров в IP-адреса. Они конструктивно могут быть интегрированы со шлюзом или представлять собой отдельный «мультимедийный менеджер конференций» или «многоголосовый менеджер доступа». Одним из решений является использование единого пакета, включающего в себя средства биллинга, маршрутизации вызовов и сетевого администрирования.

 

- возможность установки различных алгоритмов кодирования речи.

На показатели качества передаваемого голоса по IP-сети существенно влияет схема кодирования, используемая в шлюзе VoIP при сжатии голосовой информации. Наиболее распространена схема, обеспечивающая наибольшую степень сжатия информации и соответствующая спецификации G.723.1 (до 5,3 кбит/с). Применяются и другие схемы — G.729a, G.711, G.726, G.728. При этом чрезвычайно важной является оснащение шлюза дополнительной установкой используемой схемы сжатия голоса.

 

Классификация шлюзов IP-телефонии

 

По масштабности применения можно разделить на два основных типа: шлюзы, ориентированные на корпоративное применение, и шлюзы, предназначенные для операторов и поставщиков услуг связи. Продукты последнего типа отличаются большой емкостью и масштабируемостью, присутствием средств аутентификации и мониторинга, а также дополнительных возможностей биллинга.

 

По исполнению шлюзы могут быть:

- Автономные

Большинство производителей шлюзов предлагает автономные IP-шлюзы, которые обычно состоят из серверов на базе персональных компьютеров с комплектом голосовых плат. Голосовые платы не предназначены для компрессии/декомпрессии звука, поэтому данная операция должна выполняться главным процессором ПК.

- Маршрутизаторы-шлюзы

В мире производителей оборудования телекоммуникаций наметилась тенденция к тому, что крупные компании традиционное сетевое оборудование оснащают узлами, отвечающими за IP-телефонию. Эта продукция — маршрутизаторы и устройства доступа к распределенным сетям со встроенными шлюзами IP-телефонии — занимает отдельную, важную нишу на рынке сетевого оборудования.

- RAS-шлюзы

Свою часть рынка оборудования для IP-телефонии занимают шлюзы для VoIP, состоящие из плат, устанавливаемых в серверы дистанционного доступа (RAS). Установка устройств данного типа при построении IP-сетей оправдана при работе с приложениями с множеством голосовых портов.

- Шлюзы-модули для УПАТС

В настоящее время получили распространение шлюзы IP-телефонии, представляющие собой конструктивно модули для классических учрежденческих АТС. Причем, такая система перед тем, как установить соединение через IP-сеть, проверяет качество связи. В случае достаточного ее качества (норма устанавливается администратором системы), соединение устанавливается. Иначе, вызов направляется по традиционным линиям связи. Таким образом, налицо стремление фирм-производителей постепенно заменять транспортную среду, не затрагивая при этом телефонный сервис, предоставляемый конечным пользователям.

- Шлюзы с интеграцией бизнес-приложений

По мере развития систем IP-телефонии на ведущие роли выходят сервис-функции. При этом оборудование должно ориентироваться не только на интеграцию трафика, но и на интеграцию бизнес-приложений, позволяющую повысить продуктивность работы предприятий. Она позволяет реализовать службу типа «щелкни и говори», например, для установления телефонной связи между посетителями Web-узла компании и ее сотрудниками.

- Учрежденческие АТС на базе шлюзов

Еще одно направление развития оборудования IP-телефонии — построение учрежденческих телефонных систем на базе инфраструктур ЛВС. В случае, когда нецелесообразна установка отдельного сервера для преобразования телефонных сигналов в IP-пакеты, используются сетевые устройства, подключаемые напрямую к сети 10BaseT (по типу концентраторов Ethernet). При этом каждый концентратор представляет, по сути, небольшую УАТС с голосовой почтой и автоматическим секретарем, подключаемую через разъем RJ-14 к внешним и внутренним телефонным линиям и через соединители RJ-45 к локальной сети Ethernet. Обладая простотой управления и наличием встроенных средств компьютерно-телефонной интеграции эти системы в состоянии составить конкуренцию обычным учрежденческим АТС.

- Сетевые платы с функциями телефонии.

Одним из решений IP-телефонии являются многоцелевые сетевые платы с функциями телефонии. Такие устройства оборудованы портами RJ-11 для подключения обычного телефонного аппарата.

- Автономные IP-телефоны.

Представляют собой решение «все в одном» для одной линии. По внешнему виду и базовым сервисным возможностям аппаратные реализации IP-телефонов ничем особо не отличаются от обычных телефонов, но их электронная «начинка» позволяет существенно уменьшить нагрузку на персонал, отвечающий за телефонную связь.

Помимо аппаратной существуют и программные реализации IP-телефонов. В этом случае персональный компьютер (ПК), оборудованный телефонной гарнитурой или микрофоном и акустическими системами, превращается в многофункциональный коммуникационный центр. Пользователь ПК, кроме доступа к обычному телефонному сервису, получает набор дополнительных возможностей: получение информации о звонящем клиенте (благодаря наличию стандартного интерфейса TAPI к другим программам), контроль телефонных вызовов и работу с речевой почтой. Недостатками таких систем является неполная совместимость с H.323 версии 2, а также отсутствие поддержки функций по обеспечению безопасности в работе с gatekeeper.

 

4.5. Достоинства и недостатки H.323

Достоинства:

Стандарт H.323 является всеобъемлющим и гибким. Его можно использовать при разработке решений только для аудио или для законченных сетей конференцсвязи для передачи сигналов видео/аудио/данных. Существует множество выгод от реализации конференцсвязи с помощью H.323:

- Технология H.323 обеспечивает высококачественную наращиваемую конференц-связь на базе мультимедиа. Мультимедийная конференцсвязь H.323 может поддерживать такие приложения, как коллективное редактирование растровых изображений, совместная работа по передаче данных или видеоконференция.

- Технология H.323 допускает возможность взаимодействия оборудования на базе H.320 и H.323 от разных производителей.

- Технология H.323 использует с выгодой имеющиеся капиталовложения в инфраструктуру корпоративной сети.

- Технология H.323 может использоваться для организации междугородных и международных телефонных соединений для снижения их стоимости.

- Технология H.323 позволяет более эффективно использовать технологию ISDN с применением шлюзов H.320 и меньшего числа линий ISDN.

- В корпоративной интрасети H.323 может обеспечивать более надежные соединения и уменьшать проблемы поддержки.

- Технология H.323 предлагает и более сложные возможности управления конференц-связью в сети.

- Технология H.323 не зависит от аппаратного обеспечения и операционной системы.

 

Технология SIP в некоторой степени близка к компонентам Q.931 и H.225 технологии H.323. Есть некоторые недостатки H.323 по сравнению с SIP. Недостатки:

- Технология H.323 расходует больше времени на установку соединения.

- Технология H.323 требует около 12 пакетов для установки соединения (тогда как для SIP требуется около 4 пакетов).

- Технология H.323 требует и TCP, и UDP во время установки соединения.

- Реализация H.323 намного сложнее реализации SIP.

- В настоящее время с помощью H.323 не доступно управление вызовом третьей стороны.

 

 

5. Протокол инициирования сеансов связи (SIP)

5.1 Принципы построения протокола SIP.

Протокол инициирования сеансов - Session Initiation Protocol (SIP) является протоколом прикладного уровня и предназначается для организации, модификации и завершения сеансов связи (например, мультимедийных конференций, телефонных соединений). Пользователи могут принимать участие в существующих сеансах связи, приглашать других пользователей и быть приглашенными ими к новому сеансу связи.

Протокол SIP разработан группой MMUSIC комитета IETF, а спецификации протокола представлены в документе RFC 2543. В основу протокола заложены следующие принципы:

1. Персональная мобильность пользователей. Пользователи могут перемещаться без ограничений в пределах сети. Пользователю присваивается уникальный идентификатор, а сеть предоставляет ему услуги связи вне зависимости от того, где он находится.

2. Масштабируемость сети. Она характеризуется, в первую очередь, возможностью увеличения количества элементов сети при её расширении. Серверная структура сети, построенная на базе протокола SIP, отвечает этому требованию.

3. Расширяемость протокола. Она характеризуется возможностью дополнения протокола новыми функциями при введении новых услуг и его адаптации к работе с различными приложениями.

Расширение функций протокола SIP может быть произведено за счет введения новых заголовков сообщений, которые должны быть зарегистрированы в организации IANA. При этом, если SIP-сервер принимает сообщение с неизвестными ему атрибутами, то он просто игнорирует их.

Для расширения возможностей протокола SIP могут быть также добавлены и новые типы сообщений.

4. Интеграция в стек существующих протоколов Интернет, разработанных IETF. Протокол SIP является частью глобальной архитектуры мультимедиа, разработанной IETF. Эта архитектура включает в себя также и другие протоколы: резервирования ресурсов (Resource Reservation Protocol - RSVP, RFC 2205), транспортный протокол реального времени (Real-Time Transport Protocol - RTP, RFC 1889), протокол передачи потоковой информации в реальном времени (Real-Time Streaming Protocol - RTSP, RFC 2326), протокол описания параметров связи (SDP, RFC 2327). Однако функции самого протокола SIP не зависят ни от одного из этих протоколов.

5. Взаимодействие с другими протоколами сигнализации. Протокол SIP может быть использован совместно с протоколом Н.323.

 

5.2 Интеграция протокола SIP с IP-сетями

Одной из важнейших особенностей протокола SIP является его независимость от транспортных технологий. Но, в то же время, предпочтение отдается технологии маршрутизации пакетов IP и протоколу UDP. Следует оговориться, что для этого необходимо создать дополнительные механизмы для надежной доставки сигнальной информации. К таким механизмам относятся повторная передача информации при ее потере, подтверждение приема и др.

Сигнальные сообщения могут переноситься как протоколом транспортного уровня UDP, так и протоколом TCP. Протокол UDP позволяет быстрее, чем TCP, доставлять сигнальную информацию (даже с учетом повторной передачи неподтвержденных сообщений), а также вести параллельный поиск местоположения пользователей и передавать приглашения к участию в сеансе связи в режиме многоадресной рассылки. В свою очередь, протокол TCP упрощает работу с межсетевыми экранами (firewall), а также гарантирует надежную доставку данных. При использовании протокола TCP разные сообщения, относящиеся к одному вызову, либо могут передаваться по одному TCP-соединению, либо для каждого запроса и ответа на него может открываться отдельное TCP-соединение. На рисунке 5.1 показано место, занимаемое протоколом SIP в стеке протоколов TCP/IP.

 

 

 

Рисунок 5.1 Место протокола SIP в стеке протоколов TCP/IP.

 

По сети с маршрутизацией пакетов IP может передаваться пользовательская информация практически любого вида: речь, видео и данные, а также любая их комбинация. При организации связи между терминалами пользователей необходимо известить встречную сторону, какого рода информация может приниматься (передаваться), алгоритм ее кодирования и адрес, на который следует передавать информацию. Таким образом, одним из обязательных условий организации связи при помощи протокола SIP является обмен между сторонами данными об их функциональных возможностях. Для этой цели чаще всего используется протокол описания сеансов связи - SDP (Session Description Protocol). Поскольку в течение сеанса связи может производиться его модификация, предусмотрена передача сообщений SIP с новыми описаниями сеанса средствами SDP.

Для передачи речевой информации комитет IETF предлагает использовать протокол RTP, рассмотренный выше, но сам протокол SIP не исключает возможность применения для этих целей и других протоколов.

Протокол SIP предусматривает организацию конференций трех видов:

- в режиме многоадресной рассылки (multicasting), когда информация передается на один multicast-адрес, откуда затем доставляется сетью конечным адресатам;

- при помощи контроллера управления конференции (MCU), к которому участники конференции передают информацию в режиме точка-точка, а контроллер обрабатывает информацию (т.е. смешивает или коммутирует) и рассылает ее участникам конференции;

- путем соединения каждого пользователя с каждым в режиме точка-точка.

Протокол SIP дает возможность присоединения новых участников к уже существующему сеансу связи, т.е. двусторонний сеанс может перейти в конференцию.

 

5.3 Адресация

Для организации взаимодействия с существующими приложениями IP-сетей и для обеспечения мобильности пользователей протокол SIP использует адрес, подобный адресу электронной почты. В качестве адресов рабочих станций используются специальные универсальные указатели ресурсов - так называемые SIP URL(Universal Resource Locators),

SIP-адреса бывают четырех типов:

- имя@домен;

- имя@хост,

- имя@IР-адрес;

- №телефона@шлюз.

Таким образом, адрес состоит из двух частей. Первая часть - это имя пользователя, зарегистрированного в домене или на рабочей станции. Если вторая часть адреса идентифицирует какой-либо шлюз, то в первой указывается телефонный номер абонента.

Во второй части адреса указывается имя домена, рабочей станции или шлюза. Для определения IP-адреса устройства необходимо обратиться к службе доменных имен - Domain Name Service (DNS). Если же во второй части SIP-адреса размещается IP-адрес, то с рабочей станцией можно связаться напрямую.

В начале SIP-адреса ставится слово «sip:», указывающее, что это именно SIP-адрес.

Примеры SIP-адресов:

sip: [email protected]

sip: [email protected]

sip: [email protected]

 

5.4 Архитектура сети SIP

На рисунке 5.2 представлена упрощенная схема действия протокола.

 

Рисунок 5.2 Архитектура "клиент-сервер".

 

Клиент выдает запросы, в которых указывает, что он желает получить от сервера. Сервер принимает запрос, обрабатывает его и выдает ответ, который может содержать уведомление об успешном выполнении запроса, уведомление об ошибке или информацию, затребованную клиентом.

Управление процессом обслуживания вызова распределено между разными элементами сети SIP. Основным функциональным элементом, реализующим функции управления соединением, является терминал. Остальные элементы сети отвечают за маршрутизацию вызовов, а в некоторых случаях предоставляют дополнительные услуги.

В протоколе SIP устанавливаются следующие основные компоненты:

 

- терминал.

В случае, когда клиент и сервер взаимодействуют непосредственно с пользователем они называются, соответственно, клиентом агента пользователя - User Agent Client (UAC) - и сервером агента пользователя - User Agent Server (UAS).

- прокси-сервер.

Прокси-сервер принимает запросы, обрабатывает их и, в зависимости от типа запроса, выполняет определенные действия. Это может быть поиск и вызов пользователя, маршрутизация запроса, предоставление услуг и т.д. Прокси-сервер состоит из клиентской и серверной частей, поэтому может принимать вызовы, инициировать собственные запросы и возвращать ответы. Прокси-сервер может быть физически совмещен с сервером определения местоположения или существовать отдельно от этого сервера.

Предусмотрено два типа прокси-серверов - с сохранением состояний (stateful) и без сохранения состояний (stateless).

Сервер первого типа хранит в памяти входящий запрос, который явился причиной генерации одного или нескольких исходящих запросов. Эти исходящие запросы сервер также запоминает. Все запросы хранятся в памяти сервера только до окончания транзакции, т.е. до получения ответов на запросы. Он позволяет предоставить большее количество услуг, но работает медленнее, чем сервер второго типа. Он может применяться для обслуживания небольшого количества клиентов, например, в локальной сети. Прокси-сервер должен сохранять информацию о состояниях, если он:

- использует протокол TCP для передачи сигнальной информации;

- работает в режиме многоадресной рассылки сигнальной информации;

- размножает запросы.

Последний случай имеет место, когда прокси-сервер ведет поиск вызываемого пользователя сразу в нескольких направлениях, т.е. один запрос, который пришел к прокси-серверу, размножается и передается одновременно по всем этим направлениям.

Сервер без сохранения состояний просто ретранслирует запросы и ответы, которые получает. Он работает быстрее, чем сервер первого типа, так как ресурс процессора не тратится на запоминание состояний, вследствие чего сервер этого типа может обслужить большее количество пользователей. Недостатком такого сервера является то, что на его базе можно реализовать лишь наиболее простые услуги. Впрочем, прокси-сервер может функционировать как сервер с сохранением состояний для одних пользователей и как сервер без сохранения состояний - для других.

Алгоритм работы пользователей с прокси-сервером выглядит следующим образом. Поставщик услуг IP-телефонии сообщает адpec прокси-сервера своим пользователям. Вызывающий пользователь передает к прокси-серверу запрос соединения. Сервер обрабатывает запрос, определяет местоположение вызываемого пользователя и передает запрос этому пользователю, а затем получает от него ответ, подтверждающий успешную обработку запроса, и транслирует этот ответ пользователю, передавшему запрос. Прокси-сервер может модифицировать некоторые заголовки сообщений, которые он транслирует, причем каждый сервер, обработавший запрос в процессе его передачи от источника к приемнику, должен указать это в SIP-запросе для того, чтобы ответ на запрос вернулся по такому же пути.

- сервер переадресации.

Сервер переадресации предназначен для определения текущего адреса вызываемого пользователя. Вызывающий пользователь передает к серверу сообщение с известным ему адресом вызываемого пользователя, а сервер обеспечивает переадресацию вызова на текущий адрес этого пользователя. Для реализации этой функции сервер переадресации должен взаимодействовать с сервером определения местоположения.

- сервер определения местоположения пользователей.

Пользователь может перемещаться в пределах сети, поэтому необходим механизм определения его местоположения в текущий момент времени.

Для хранения текущего адреса пользователя служит сервер определения местоположения пользователей, представляющий собой базу данных адресной информации. Кроме постоянного адреса пользователя, в этой базе данных может храниться один или несколько текущих адресов.

Этот сервер может быть совмещен с прокси-сервером или быть реализован отдельно от прокси-сервера, но иметь возможность связываться с ним.

5.5 Пример SIP-сети

Сети SIP обычно строятся из элементов трех основных типов: терминалов, прокси-серверов и серверов переадресации. На рис. 5.3 приведен пример возможног

Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...