Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

Классификация и виды технологического оборудования




Применяемое в химической промышленности оборудование классифицируется по различным признакам.

По назначению и принципу действия оборудование подразделяют на машины и аппараты.

По областям применения и масштабам производства оборудование подразделяется следующим образом:

– универсальное;

– специализированное;

– специальное.

По роли в осуществлении технологического процесса оборудование подразделяют на основное и вспомогательное.

По условиям работы различают непрерывно и периодически действующее оборудование. В отдельную группу относят оборудование, работающее в полунепрерывном режиме В зависимости от характера протекающих процессов аппараты подразделяют на следующие группы:

теплообменные – эти процессы проводят в теплообменниках, холодильных установках, выпарных аппаратах, кристаллизаторах;

массообменные – для их проведения служат ректификационные колонны, абсорберы, десорберы, экстракторы, сушилки, ионообменники;

гидромеханические – предназначенные для разделения неоднородных газовых или жидких систем на составляющие компоненты; указанные

реакционные – предназначенные для проведения химических процессов превращения одних веществ в другие (синтез, разложение, обменные реакции, окислительно-восстановительные процессы);

По гидродинамическому режиму движения и перемешивания реагентов реакторы подразделяют на две группы:

· реакторы смешения, представляющие собой емкостные аппараты, снабженные перемешивающим устройством либо циркуляционным насосом (аппараты кипящего слоя, смесители, кристаллизаторы);

· реакторы вытеснения, имеющие форму удлиненного желоба или трубы, в которых движение реагентов происходит только в одном направлении, а перемешивание носит локальный характер и обусловлено неравномерностью скоростей движения потока, флуктуациями и местными завихрениями (трубчатые аппараты, выщелачиватели).

По техническому назначению реакторы подразделяют:

· ректоры для проведения гомогенных процессов (газофазных и жидкофазных);

· ректоры для проведения гетерогенных процессов (химических процессов, протекающих в системах газ-твердое, газ-жидкость, жидкость-твердое и др.);

· контактные аппараты – реакторы для проведения каталитических процессов в системе газ-газ с участием твердых катализаторов;

· печи – реакторы для проведения высокотемпературных процес-сов;

· аппараты высокого давления – выделяются в отдельную группу в связи с особенностями их конструкции, обусловленными работой при высоком давлении; в химической промышленности к этой группе относят аппараты, работающие под давлением свыше 10 МПа.

 

№6 Легированные стали, применение в химическом машиностроении

Легированные стали предназначены для аппаратов, работающих в агрессивных условиях или при высокой температуре.Имеют в своем составе легирующие элементы, основными из которых являются никель, хром, вольфрам, титан и другие металлы. Никель повышает коррозионную стойкость стали, повышает ее механическую прочность. Хром увеличивает жаропрочность стали, а при содержании 11–14% делает ее устойчивой к атмосферной коррозии (так называемая нержавеющая сталь). Марганец при содержании 10–15% придает стали высокую сопротивляемость ударам и эрозии; такая сталь используется для изготовления деталей дробилок и мельниц. Молибден повышает коррозионную устойчивость стали к горячим серной и фосфорной кислотам. Вольфрам повышает стойкость стали к водородной коррозии.

Маркировка легированных сталей

Для маркировки легированных сталей принята буквенно-цифровая система (пример маркировки: 10Х17Н13М2Т). Легирующие элементы обозначаются следующими буквами:

Ni Cr Mo W V Mn Cu Ti Al Si
Н Х М В Ф Г Д Т Ю С

Первые две цифры указывают на содержание углерода в сотых долях процента, цифры после букв – содержание соответствующих элементов в процентах.

Если в сплаве легирующего элемента менее 2%, то его содержание не указывается.

Низколегированные стали содержат до 2,5% легирующих элементов. К ним относятся марганцовистые (14Г…, 19Г…), кремнемарганцевые (12ГС…, 09Г2С, 16ГС…), марганцево-ванадиевые (16ГФ) и др угие.

Наиболее широкое применение в химической промышленности получили кремнемарганцевые стали. Помимо повышенной на 15–35% по сравнению со сталями СТ3, 20 прочностью и надежностью, они обладают хорошей пластичностью, ударной вязкостью и отличной свариваемость. Коррозионно-стойкие (нержавеющие) стали обладают стойкостью против химической и электрохимической коррозии. Наиболее широкое распространение в химической промышленности получила сталь марки 12Х18Н10Т, которая устойчива к воздействию азотной кислоты, нитратов, щелочей и к газовой коррозии, выдерживает воздействие температур до 800°С (одновременно относится и ко второй группе). В производстве фосфорной кислоты используются стали, содержащие молибден и медь, марок ЭИ-943 (ОХ23Н28М3Д3Т). Жаростойкие стали обладают стойкостью против химического разрушения в газовых средах при температурах свыше 550°С, работают в ненагруженном или слабонагруженном состоянии (марки 12Х17, 15Х25Т). Жаропрочные стали работают в течение определенного времени при высоких температурах при нагруженном состоянии.

Для работы в высокоагрессивных средах при давлении до 100 МПа и в интервале температур от –195 до 700°С рекомендуется использовать сталь 10Х17Н13М2Т.

Высоколегированные стали вследствие высоких прочности и коррозионной стойкости широко используются в химическом машиностроении, но они намного дороже углеродистых сталей. Поэтому для снижения расхода дорогостоящих легированных сталей на изготовление аппаратов в настоящее время предлагаются следующие пути.

1. Использование двухслойных металлов. Для защиты от коррозии достаточен слой коррозионно-стойкого материала толщиной несколько миллиметров (обычно от 2 до 5 мм), а для обеспечения условий прочности стенка должна быть значительно толще. Поэтому используют двухслойную листовую сталь, состоящую из основного слоя, выполненного из углеродистой стали, и защитного (плакирующего) слоя из легированных сталей типа 12Х18Н10Т, а также из цветных металлов. В соответствии с ГОСТом 10885–75 двухслойные листы изготавливаются толщиной 4–160 мм. Однако в связи с различием в значениях температурных коэффициентов линейного расширения основного и плакирующего слоев ТУ регламентируют интервалы температур и давлений для работы аппаратов, изготовленных из двухслойных материалов.

2. Использование экономнолегированных сталей, имеющих пониженное содержание остродефицитного никеля. К таким сталям относятся марки 08Х22НGТ, 08Х13Н взамен стали марки 12Х18Н10Т.

3. Использование безникелевых сталей, к которым относятся коррозионно-стойкие аустенитовые стали. Они предназначены для изготовления аппаратов, которые работают в температурном интервале от –210 до 400°С. Такие стали устойчивы к действию разбавленной серной кислоты, 50%-й азотной кислоты, 10%-й уксусной кислоты.

 

 


 

№7 Корпуса аппаратов высокого давления

 

Корпус – основной элемент, так как воспринимает основную нагрузку от внутреннего давления. Имеет значительную толщину стенок. Как правило, стоимость производства корпуса определяет стоимость колонны. Изготавливают корпуса в виде различных конструкций, соответственно для изготовления используются различные методы.

Цельнокованые корпуса выполняют из цельной стальной отливки массой 200–350 т, в середине которой высверливается отверстие. Далее заготовку надевают на оправу и проковывают молотом большой мощности до получения нужного диаметра с заданной толщиной.

Ковано-сварные корпуса состоят из нескольких кованых царг длиной 3–4 м, сваренных встык.

Штампо-сварные корпуса. Сначала из толстолистовой стали штампуют полуобечайки, затем сваривают продольным швом в царги (кольца), далее царги сваривают встык в корпус требуемой длины.

Общий недостаток сплошных корпусов – высокое напряжение во внутренних слоях металла, тогда как наружные слои нагружены слабо – ведет к перерасходу металла.

Многослойные корпуса изготавливают путем последовательной напрессовки обечаек и полуобечаек. На внутреннюю цельнотянутую или сварную гильзу толщиной 12 мм плотно насаживают гидропрессом полуобечайки толщиной 5–6 мм и соединяют продольным швом. Швы зачищают вровень с листом и надевают следующий слой. Получают царги длиной 3–4 м, которые сваривают встык. Этот способ широко применяется в США и странах СНГ.

Витые (оплетенные) корпуса изготавливают путем наматывания специальной профильной ленты шириной 60–100 мм, нагретой до 700–800°С, на внутреннюю гильзу. Лента укладывается по винтовой линии. После остывания лента сжимает гильзу, что создает равномерное распределение нагрузки.

Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...