Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

Раздел 3. Нейрофизиология спинного мозга




Тема 4. Нейрофизиология спинного мозга. Спинной мозг — наиболее древнее образование центральной нервной системы; он впервые появляется у ланцетника. Приобретая новые связи и функции в ходе эволюции, спинной мозг высших организмов сохраняет старые связи и функции, которые у него возникли на всех предыдущих этапах развития.

Характерной чертой организации спинного мозга является наличие сегментов, имеющих входы в виде задних корешков, клеточную массу нейронов (серое вещество) и выходы в виде передних корешков. Спинной мозг человека имеет 31—33 сегмента: 8 шейных, 12 грудных, 5 поясничных, 5 крестцовых, 1—3 копчиковых. Морфологических границ между сегментами спинного мозга не существует, поэтому деление на сегменты является функциональным и определяется зоной распределения в нем волокон заднего корешка и зоной клеток, которые образуют выход передних корешков. Каждый сегмент через свои корешки иннервирует три метамера тела и получает информацию также от трех метамеров тела. В итоге перекрытия каждый метамер тела иннервируется тремя сегментами и передает сигналы в три сегмента спинного мозга.

Спинной мозг человека имеет два утолщения: шейное и поясничное — в них содержится большее число нейронов, чем в остальных его участках.

Волокна, поступающие по задним корешкам спинного мозга, выполняют функции, которые определяются тем, где и на каких нейронах заканчиваются данные волокна. В опытах с перерезкой и раздражением корешков спинного мозга показано, что задние корешки являются афферентными, чувствительными, центростремительными, а передние — эфферентными, двигательными, центробежными (закон Белла—Мажанди).

Афферентные входы в спинной мозг организованы аксонами спинальных ганглиев, лежащих вне спинного мозга, и аксонами экстра- и интрамуральных ганглиев симпатического и парасимпатического отделов автономной нервной системы.

Первая группа афферентных входов спинного мозга образована чувствительными волокнами, идущими от мышечных рецепторов, рецепторов сухожилий, надкостницы, оболочек суставов. Эта группа рецепторов образует начало так называемой проприоцептивной чувствительности. Проприоцептивные волокна по толщине и скорости проведения возбуждения делятся на 3 группы. Волокна каждой группы имеют свои пороги возникновения возбуждения. Вторая группа афферентных входов спинного мозга начинается от кожных рецепторов: болевых, температурных, тактильных, давления — и представляет собой кожную рецептирующую систему. Третья группа афферентных входов спинного мозга представлена рецептирующими входами от висцеральных органов; это висцеро-рецептивная система.

Эфферентные (двигательные) нейроны расположены в передних рогах спинного мозга, и их волокна иннервируют всю скелетную мускулатуру.

Нейроны спинного мозга образуют его серое вещество в виде симметрично расположенных двух передних и двух задних рогов в шейном, поясничном и крестцовом отделах. Серое вещество распределено на ядра, вытянутые по длине спинного мозга, и на поперечном разрезе располагается в форме буквы Н. В грудном отделе спинной мозг имеет, помимо названных, еще и боковые рога.

Задние рога выполняют главным образом сенсорные функции и содержат нейроны, передающие сигналы в вышележащие центры, в симметричные структуры противоположной стороны либо к передним рогам спинного мозга.

В передних рогах находятся нейроны, дающие свои аксоны к мышцам. Все нисходящие пути центральной нервной системы, вызывающие двигательные реакции, заканчиваются на нейронах передних рогов. В связи с этим Шеррингтон назвал их «общим конечным путем».

Начиная с I грудного сегмента спинного мозга и до первых поясничных сегментов, в боковых рогах серого вещества располагаются нейроны симпатического, а в крестцовых — парасимпатического отдела автономной (вегетативной) нервной системы.

Спинной мозг человека содержит около 13 млн нейронов, из них 3% — мотонейроны, а 97% — вставочные. Функционально нейроны спинного мозга можно разделить на 4 основные группы:

1) мотонейроны, или двигательные, — клетки передних рогов, аксоны которых образуют передние корешки;

2) интернейроны — нейроны, получающие информацию от спинальных ганглиев и располагающиеся в задних рогах. Эти нейроны реагируют на болевые, температурные, тактильные, вибрационные, проприоцептивные раздражения;

3) симпатические, парасимпатические нейроны расположены преимущественно в боковых рогах. Аксоны этих нейронов выходят из спинного мозга в составе передних корешков;

4) ассоциативные клетки — нейроны собственного аппарата спинного мозга, устанавливающие связи внутри и между сегментами.

Нервные клетки разных типов, разбросаны диффузно или собраны в виде ядер. Большинство ядер в спинном мозге занимают несколько сегментов, поэтому афферентные и эфферентные волокна, связанные с ними, входят в спинной мозг и выходят из него по нескольким корешкам. Наиболее значительными спинномозговыми ядрами являются ядра передних рогов, образованные мотонейронами. Выделяют три типа мотонейронов: альфа, бета и гамма. Альфа-мотонейроны представлены крупными мультиполярными клетками с диаметром тела 25-75 мкм; их аксоны иннервируют двигательные мышцы, которые способны развивать значительную силу. Бета-мотонейроны - это мелкие нейроны, которые иннервируют тонические мышцы. Гамма-мотонейроны еще мельче - диаметр их тела 15-25 мкм. Они локализованы в двигательных ядрах вентральных рогов среди альфа- и бета-мотонейронов. Гамма-мотонейроны осуществляют двигательную иннервацию мышечных рецепторов (мышечных веретен). Аксоны этих двух типов мотонейронов составляют основную массу передних корешков спинного мозга.

В основании заднего рога находится другое скопление нервных клеток, образующих промежуточное ядро спинного мозга. Нейроны, составляющие ядро этой зоны, имеют короткие аксоны, которые в основном идут в передний рог и образуют там синаптические контакты с мотонейронами. Аксоны некоторых из этих нейронов распространяются на 2-3 сегмента, но никогда не выходят за пределы спинного мозга.

По поверхности заднего рога располагается слой мелких нейронов. образующих желатинозную субстанцию (роландову), которые осуществляют контроль синаптического проведения от первичных афферентов на нейронные системы спинного мозга.

Рефлексы спинного мозга. Введем некоторые важные определения. Минимальная сила раздражения, которая вызывает данный рефлекс, называется порогом (или пороговым стимулом) данного рефлекса. Всякий рефлекс имеет рецептивное поле, т. е. совокупность рецепторов, раздражение которых вызывает рефлекс с наименьшим порогом.

При изучении движений приходится расчленять сложный рефлекторный акт на отдельные относительно простые рефлексы. Вместе с тем следует помнить, что в естественных условиях отдельный рефлекс выступает только как элемент сложной деятельности. Простейшими рефлексами, которые можно легко наблюдать, являются сгибателъный и разгибателъный. Под сгибанием следует понимать уменьшение угла данного сустава, а под разгибанием его увеличение. Сгибательные рефлексы широко представлены в движениях человека. Характерным для этих рефлексов является большая сила, которую они могут развивать. Вместе с тем они быстро утомляются. Разгибательные рефлексы также широко представлены в движениях человека. Например, к ним относятся рефлексы поддержания вертикальной позы. Эти рефлексы в отличие от сгибательных значительно более устойчивы к утомлению. Действительно, мы можем долго ходить и стоять, но для выполнения длительной работы, например поднимания рукой гири, наши физические возможности значительно более ограничены.

Универсальный принцип рефлекторной деятельности спинного мозга получил название общего конечного пути. Дело в том, что соотношение количества волокон в афферентных (задних корешках) и эфферентных (передних корешках) путях спинного мозга составляет примерно 5:1. Ч. Шеррингтон (выдающийся английский физиолог, современник И. П. Павлова) образно сравнивал этот принцип с воронкой (воронка Шеррингтона), широкую часть которой составляют афферентные пути задних корешков, а узкую эфферентные пути передних корешков спинного мозга. Нужно помнить, что общий конечный путь, являясь при осуществлении рефлекторной деятельности спинного мозга функциональным образованием, часто оказывается сложным. Нередко территория конечного пути одного рефлекса перекрывается с территорией конечного пути другого рефлекса. Другими словами, разные рефлексы могут соревноваться за занятие конечного пути. Это можно проиллюстрировать таким примером. Представим себе, что собака убегает от опасности и ее в это время кусает блоха. В данном примере за общий конечный путь - мышцы задней лапы - соревнуются два рефлекса: один-чесательный, а другой - рефлекс ходьбы-бега. В одни моменты может пересиливать чесательный рефлекс, и собака останавливается и начинает чесаться, но затем вновь верх может взять рефлекс ходьбы-бега, и собака возобновит бег.

Как уже указывалось, при осуществлении рефлекторной деятельности отдельные рефлексы спинного мозга взаимодействуют друг с другом, образуя функциональные системы. Один из самых важных элементов функциональной системы - обратная афферентация, благодаря которой нервные центры как бы оценивают, как выполняется реакция, и могут внести в нее необходимые коррективы. Некоторые конкретные механизмы обратной афферентации будут рассмотрены ниже.

Один из таких примеров - рефлекс на растяжение. Примером такого рефлекса может служить коленный рефлекс, который возникает при легком ударе по сухожилию мышцы в подколенной чашечке. Рефлекс на растяжение предотвращает чрезмерное растяжение мышцы, которая как бы сопротивляется растягиванию. Этот рефлекс возникает как ответная реакция мышцы на стимуляцию ее рецепторов, поэтому его часто обозначают как собственный рефлекс мышцы.

Известны два вида рефлекса на растяжение: тонический (медленный) и фазический (быстрый). Для разделения этих двух типов рефлексов применяют два способа растягивания мышцы: медленное растягивание мышцы вызывает тонический рефлекс на растяжение, быстрое - фазический рефлекс. Примерами фазических рефлексов на растяжение могут служить коленный и ахиллов), флекс вызывают легким ударом по ахиллову сухожилию). Доказательством того, что эти рефлексы осуществляются за счет активации рецепторов только самих мышц, а не сухожилий или суставов, может служить их сохранение при анестезии суставной сумки. Примером тонического рефлекса на растяжение может быть собственный рефлекс икроножной мышцы. Это одна из главных мышц, благодаря которой поддерживается вертикальная поза человека.

В случаях раздражения и поражения задних корешков спинного мозга наблюдаются «стреляющие», опоясывающие боли на уровне метамера пораженного сегмента, снижение чувствительности всех видов, утрата или снижение рефлексов, вызываемых с метамера тела, который передает информацию в пораженный корешок.

В случаях изолированного поражения заднего рога утрачивается болевая и температурная чувствительность на стороне повреждения, а тактильная и проприоцептивная сохраняется, так как из заднего корешка аксоны температурной и болевой чувствительности идут в задний рог, а аксоны тактильной и проприоцептивной — прямо в задний столб и по проводящим путям поднимаются вверх. Вследствие того, что аксоны вторых нейронов болевой и температурной чувствительности идут на противоположную сторону через переднюю серую спайку спинного мозга, при повреждении этой спайки на теле симметрично утрачивается болевая и температурная чувствительность.

Поражение переднего рога и переднего корешка спинного мозга приводит к параличу мышц, которые теряют тонус, атрофируются, при этом исчезают рефлексы, связанные с пораженным сегментом.

В случае поражения боковых рогов спинного мозга исчезают кожные сосудистые рефлексы, нарушается потоотделение, наблюдаются трофические изменения кожи, ногтей. При одностороннем поражении парасимпатического отдела автономной нервной системы на уровне крестцовых отделов спинного мозга нарушений дефекации и мочеиспускания не наблюдается, так как корковая иннервация этих центров является двусторонней.

При травмах у человека в ряде случаев происходит полное или половинное пересечение спинного мозга. При половинном латеральном повреждении спинного мозга развивается синдром Броун-Секара. Он проявляется в том, что на стороне поражения спинного мозга (ниже места поражения) развивается паралич двигательной системы вследствие повреждения пирамидных путей. На противоположной поражению стороне движения сохраняются.

На стороне поражения (ниже места поражения) нарушается проприоцептивная чувствительность. Это обусловлено тем, что восходящие пути глубокой чувствительности идут по своей стороне спинного мозга до продолговатого мозга, где происходит их перекрест.

На противоположной стороне туловища (относительно повреждения спинного мозга) нарушается болевая чувствительность, так как проводящие пути болевой чувствительности кожи идут от спинального ганглия в задний рог спинного мозга, где переключаются на новый нейрон, аксон которого переходит на противоположную сторону. В итоге если повреждена левая половина спинного мозга, то исчезает болевая чувствительность правой половины туловища ниже повреждения. Полную перерезку спинного мозга в экспериментах на животных производят для исследования влияния вышележащих отделов ЦНС на нижележащие. После полного пересечения спинного мозга возникает спинальный шок. Это явление заключается в том, что все центры ниже перерезки перестают организовывать присущие им рефлексы. Нарушение рефлекторной деятельности после пересечения спинного мозга у разных животных длится разное время. У лягушек оно исчисляется десятками секунд, у кролика рефлексы восстанавливаются через 10—15 мин, у собак отдельные рефлексы, например мышечного сокращения, восстанавливаются через несколько часов, другие — через несколько дней (рефлексы регуляции артериального давления), через недели восстанавливаются рефлексы мочеиспускания. У обезьян первые признаки восстановления рефлексов после перерезки спинного мозга появляются через несколько суток; у человека первые спинальные рефлексы восстанавливаются через несколько недель, а то и месяцев.

Следовательно, чем сложнее организация ЦНС у животного, тем сильнее контроль вышележащих отделов мозга над нижележащими. То, что причиной шока является нарушение супраспинальных влияний, доказывается повторной перерезкой спинного мозга ниже места первой перерезки. В этом случае спинальный шок не возникает, рефлекторная деятельность спинного мозга сохраняется.

По истечении длительного периода времени после шока спинальные рефлексы резко усиливаются, что объясняется устранением тормозного влияния ретикулярной формации ствола мозга на рефлексы спинного мозга.

 

Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...