Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

Основные принципы проектирования




Первый этап компоновки редуктора.

Компоновочный чертеж выполняется в одной проекции - разрез по осям валов при снятой крышке редуктора в масштабе 1:1.

Примерно посредине листа параллельно его длиной стороне проводим горизонтальную осевую линию, затем две вертикальные линии - оси валов на расстоянии a=180 мм.

Вычерчиваем упрощенно шестерню и колесо в виде прямоугольников; шестерня выполнена за одно целое с валом; длина ступицы колеса равна ширине венца и не выступает за пределы прямоугольника.

Очерчиваем внутреннюю стенку корпуса:

а) принимаем зазор между торцом шестерни и внутренней стенкой корпуса А1= 1,2·д=1,2·8=9,6 мм, принимаю А1=10 мм; при наличии ступицы зазор берется от торца ступицы;

б) принимаем зазор от окружности вершин зубьев колеса до внутренней стенки корпуса А=д=8 мм;

в) принимаем расстояние между наружным кольцом подшипника ведущего вала и внутренней стенкой корпуса А=д=8 мм; если диаметр окружности вершин зубьев шестерни окажется больше наружного диаметра подшипника, то расстояние А надо брать от шестерни.

Предварительно намечаем радиальные шарикоподшипники средней серии; габариты подшипников выбираем по диаметру вала в месте посадки подшипников. Габариты подшипников заносим в таблицу 7.1.

Таблица 7.1 Габариты подшипников.

 
Условное Обозначение подшипника d, мм D, мм В, мм С, кН Со, кН  
        33,2    
        65,8    
             

Конструктивные размеры корпуса редуктора.

Толщина стенок корпуса и крышки

= 0,025а + 1 = 0,025∙140 + 1 = 4,5 мм, принимаем = 5 мм

= 0,02а + 1 = 2,8 + 1 = 3,8 мм принимаем = 5 мм.

Толщина фланцев поясов корпуса и крышки

Верхний пояс корпуса и пояс крышки

b = 1,5 = 1,5 ∙5 = 7,5 мм, принимаем b = 8 мм

b1 = 1,5 = 1,5 ∙5 = 7,5 мм, принимаем b = 8 мм

Нижний пояс корпуса

Р = 2,35 =2,35∙5 = 11,8 мм принимаем Р = 12 мм

Диаметр болтов:

фундаментных

 

 

Принимаем болты с резьбой М16.

Крепящих крышку к корпусу у подшипников

Принимаем болты М12

Соединяющих крышку с корпусом

Принимаем болты М8

 

 

Основные принципы проектирования

Проектирование машин и их деталей является особым видом инженерного искусства. Для правильного проектирования недостаточно знания одной лишь теории. Необходимо знакомство с существующими конструкциями и умение в них критически разбираться; знание методов изготовления деталей; знание условий работы проектируемой машины; умение конкретно воплощать свои идеи в виде конструктивного чертежа. Умственное представление всего проектируемого должно предшествовать чертежу так же, как мысль должна предшествовать слову. Ясно, что для проектирования машин и их деталей необходим некоторый практический навык. В данном пособии будут указаны основные принципы, правила и приемы проектирования, знакомство с которыми позволит студентам успешно выполнить курсовой проект по деталям машин.

Проектирование машины состоит прежде всего из конструктивной разработки общего расположения машины и выбора формы отдельных ее деталей, а также из тесно связанных между собой расчета машины и ее частей и выполнения чертежей: установочного для машины; сборочных для ее частей; рабочих для ее деталей.

Рационально спроектированная и правильно построенная машин должна быть прочной, долговечной, возможно дешевой и экономичной в работе, а также безопасной для обслуживающих ее лиц. Этим основным требованиям должна удовлетворять не только каждая машина в целом, но и каждая ее деталь. При конструировании машин экономические соображения должны всегда стоять на одном из первых мест. Стоимость машины определяется стоимостью материала, изготовления и обработки отдельных ее деталей, а также массой машины, т.е. экономией машиностроительных материалов. Габариты и масса машины в значительной степени определяются ее кинематической схемой и компоновкой ее узлов и деталей. Компоновка узлов и деталей машин должна быть такой, чтобы возможно полнее использовать рабочее пространство рам, станин и корпусов. Уменьшение габаритов машин приводит не только к экономии машиностроительных материалов и тем самым к снижению их стоимости, но и позволяет устанавливать на одних и тех же производственных площадях большее количество машин, что приводит к увеличению количества продукции, снимаемой с квадратной единицы полезной производственной площади.

Для уменьшения массы машин во всех случаях, где это возможно, необходимо применять гнутые, штампованные, пустотелые облегченные тонкостенные профили проката. Большую экономию не только в расходе машиностроительных материалов, но и в стоимости деталей машин дает применение таких прогрессивных методов изготовления деталей машин, как сварка, центробежная отливка полых тел вращения, отливка в кокиль. По этим соображениям иногда бывает рационально заменить литые детали штампованными, а кованые штампосварными.

Для снижения стоимости машин большое значение имеет также замена дорогостоящих материалов (например, цветные металлы и легированные стали) более дешевыми, когда это не вызывает ухудшения качества машин. Всегда, когда это возможно и экономически целесообразно, для изготовления деталей машин следует взамен черных и цветных металлов применять пластмассы. Вместе с тем снижение стоимости машин может быть достигнуто, если основные детали их, от которых зависят размеры отдельных частей и всей машины, изготовлять из более прочного, хотя и более дорогого материала. Например, в редукторах применение высокопрочных сталей для изготовления зубчатых колес, приводящее к уменьшению размеров последних, позволяет уменьшить размеры и массу такой дорогостоящей детали, как корпус редуктора. Это в свою очередь позволяет уменьшить размеры и массу такой дорогостоящей детали, как корпус редуктора, что в свою очередь позволяет уменьшить размеры и массу рамы машины или привода и тем самым снизить их стоимость. Исходя из этого в ряде случаев рекомендуется применять вместо обыкновенного серого чугуна модифицированный и высокопрочный чугун, а взамен углеродистой стали легированные стали.

Одним из наиболее эффективных средств экономии машиностроительных материалов является использование точных методов расчета деталей машин, позволяющих брать для последних минимальные запасы прочности. Однако не всегда наиболее дешевая машина является наилучшей. В большинстве случаев наиболее выгодной машиной будет та, у которой сумма всех эксплуатационных расходов, включая амортизацию, ремонт, смазку и т. п., наименьшая. Не рекомендуется возлагать на один и тот же механизм слишком много функций. При этом конструкция данного механизма усложняется, а чем сложнее механизм, тем он дороже и менее долговечен. Поэтому при проектировании машин следует применять принцип разделения функций между отдельными механизмами машины. Весьма важное значение имеет количество выполняемых одновременно одинаковых машин или их деталей. Экономия материала и простота обработки тем важнее, чем большее количество одинаковых деталей изготовляется. При проектировании деталей машин следует по возможности пользоваться простыми геометрическими формами и их комбинациями, легко получаемыми при обработке деталей на станках. Огромное значение для удешевления машины при повышении ее качества имеет применение стандартных деталей и узлов и стандартных размеров. Поэтому при проектировании машин и их деталей не только необходимо применение существующих ГОСТов, но и рекомендуется пользоваться ведомственными нормалями наших проектных организаций и заводов. Широкое внедрение в машиностроение стандартных деталей машин позволяет не только сократить время на изготовление машины, но и облегчить сам процесс проектирования. Блочность машины, т. е. разбивка ее на ряд отдельных легко собираемых блоков (узлов), облегчает и ускоряет сборку машины (блоки легко разбирают и сменяют). Экономичность машины в работе зависит главным образом от соответствия конструкции машины тем законам, на которых основано ее действие; материала и тщательности выполнения деталей машины; правильности монтажа машины; внимательного ухода за машиной, от чего зависят эксплуатационные расходы во время работы машины, а также ее долговечность. Уменьшение вредных сопротивлений в машине и как следствие увеличение ее коэффициента полезного действия и повышение срока службы отдельных деталей и узлов машины — одно из важнейших требований, предъявляемых к машине при ее проектировании.

Увеличение коэффициента полезного действия машины достигается: рациональным выбором ее кинематической схемы; назначением наиболее совершенных типов передач; рациональным выбором материала, формы и обработки трущихся деталей; рациональным выбором смазки трущихся поверхностей деталей машины.

При проектировании машин необходимо стремиться предупредить возможность несчастных случаев. Для этого следует: предусматривать возможность моментальной остановки машин в случае несчастья; движущиеся открытые части машин ограждать перилами, щитами, кожухами и т. п. устройствами; везде, где возможно, выступающие, вращающиеся части, как, например, болты муфт, закрывать гладкими фланцами; предусматривать предохранительные приспособления от возможных взрывов частей машины. Нельзя ограничиваться рассмотрением одной кинематической или динамической стороны, а необходимо принимать во внимание материал, форму, условия и возможность изготовления деталей машин, реальные условия работы их в промышленности и другие обстоятельства конструктивного и экономического порядка. Особое внимание уделяется облегчению условий труда рабочих. Машина должна отнимать у рабочего возможно меньше времени для своего управления и ухода за ней и не должна утомлять его. Все операции, требующие физического и нервного напряжения, по возможности следует устранять. Снижение утомляемости рабочих способствует повышению производительности и качества их труда. При проектировании машин необходимо обращать внимание на их внешний вид.

Разработка схемы машины и конструктивной формы отдельных её деталей составляет первую стадию проектирования. Следующий этап — расчет машины и ее деталей и создание чертежей. Никогда не следует задерживать начало вычерчивания до полного окончания расчета. Эта первая ошибка начинающих почти всегда влечет за собой бесполезную трату времени и труда на неизбежные в этом случае переделки расчета и неожиданные недоразумения при вычерчивании. Расчеты деталей машин на прочность, жесткость и устойчивость производятся в основном по формулам сопротивления материалов. Напряжение в деталях машин нигде не должно превосходить допускаемого для них при данных условиях работы, а деформация деталей машин во всех случаях должна быть упругой. На размеры деталей машин влияет не только расчет их на прочность, но и другие, чисто практические обстоятельства: возможность и простота изготовления деталей машин; возможность последующей обработки их; возможность сборки машины и монтажа ее на месте; возможность ремонта машины; безопасность обслуживающих лиц; условия доставки машины и ее частей на место установки. Учесть заранее все эти обстоятельства крайне трудно. Поэтому после установления схемы машины на эскизе следует приступать к выполнению чертежей, как только расчет даст достаточно данных для него, т. е. сейчас же проверять все полученные расчетом размеры на чертеже, не откладывая начало вычерчивания до окончания расчета.

Практикой машиностроения установлен ряд конструктивных положений общего характера, которых рекомендуется придерживаться при проектировании машин и их деталей. Основные из этих положений можно сформулировать следующим образом. При проектировании машин и их деталей необходимо пользоваться ГОСТами и ведомственными нормалями заводов и проектных организаций. При расчете деталей машин диаметры и длины необходимо округлять, принимая ближайшее к ним значение из ряда нормальных диаметров и длин по ГОСТ 6636—81*.

Расчеты деталей машин на прочность, жесткость и устойчивость надо производить везде, где это возможно, по максимально допускаемым напряжениям и деформациям. Не следует применять резких изменений сечения. Во избежание появления в этих местах концентрации напряжений, часто являющейся причиной поломок, все переходы рекомендуется сопрягать плавными закруглениями не слишком малого радиуса.

Рис.9.1 Рис.9.2

При передаче деталями машин больших усилий необходимо, чтобы эти усилия воспринимались возможно солидными частями, высокими ребрами и т. п., чтобы распределить их на возможно большую поверхность и массу. Так, например, на рис. 9.1 показана правильная конструкция, где фундаментный болт пропущен через высокую часть рамы, а на рис. 9.2 - менее надежная конструкция со сравнительно слабой лапой, которая при действии на нее усилий легко может отломаться. Стоимость литых деталей относительно высока и поэтому рамы под приводы рекомендуется выполнять по возможности из металлоконструкций (рис.9.3).

Рис.9.3. Установка привода на сварной раме из швеллеров: 1 – сварная рама; 2 – коническо-цилиндрический

редуктор; 3 – муфта; 4 – электродвигатель

 

Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...