Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

Наследование признаков, сцепленных с полом




Установлено, что в половых хромосомах находятся гены, отвечающие не только за развитие половых, но и за формирование неполовых признаков (свертываемость крови, цвет зубной эмали, чувствительность к красному и зеленому цвету и т.д.). Наследование неполовых признаков, гены которых локализованы в Х - или Y -хромосомах, называют наследованием, сцепленным с полом.

Изучением наследования генов, локализованных в половых хромосомах, занимался Т. Морган.

У дрозофилы красный цвет глаз доминирует над белым. Реципрокное скрещивание — два скрещивания, которые характеризуются взаимно противоположным сочетанием анализируемого признака и пола у форм, принимающих участие в этом скрещивании. Например, если в первом скрещивании самка имела доминантный признак, а самец — рецессивный, то во втором скрещивании самка должна иметь рецессивный признак, а самец — доминантный. Проводя реципрокное скрещивание, Т. Морган получил следующие результаты. При скрещивании красноглазых самок с белоглазыми самцами в первом поколении все потомство оказывалось красноглазым. Если скрестить между собой гибридов F1, то во втором поколении все самки оказываются красноглазыми, а среди самцов — половина белоглазых и половина красноглазых. Если же скрестить между собой белоглазых самок и красноглазых самцов, то в первом поколении все самки оказываются красноглазыми, а самцы белоглазыми. В F2 половина самок и самцов — красноглазые, половина — белоглазые.

Объяснить полученные результаты наблюдаемого расщепления по окраске глаз Т. Морган смог, только предположив, что ген, отвечающий за окраску глаз, локализован в Х -хромосоме (ХА — красный цвет глаз, Ха — белый цвет глаз), а Y -хромосома таких генов не содержит.

Р ♀XAXA красноглазые × ♂XaY белоглазые
Типы гамет XA   Xa Y
F1 XAXa ♀ красноглазые 50%   XАY ♂ красноглазые 50%

 

Р ♀XAXa красноглазые × ♂XAY красноглазые
Типы гамет XA Xa   XA Y
F2 XAXA XAXa ♀ красноглазые 50%   XАY ♂ красноглазые 25% XaY ♂ белоглазые 25%

 

Р ♀XaXa белоглазые × ♂XAY красноглазые
Типы гамет Xa   XA Y
F1 XAXa ♀ красноглазые 50%   XaY ♂ белоглазые 50%

 

Р ♀XAXa красноглазые × ♂XaY белоглазые
Типы гамет XA Xa   Xa Y
F2 XAXA ♀ красноглазые 25% XaXa ♀ белоглазые 25%   XАY ♂ красноглазые 25% XaY ♂ белоглазые 25%
           

 

Схема половых хромосом человека и сцепленных с ними генов:
1 — Х-хромосома; 2 — Y-хромосома.

У людей мужчина получает Х -хромосому от матери, Y -хромосому — от отца. Женщина получает одну Х -хромосому от матери, другую Х -хромосому от отца. Х -хромосома — средняя субметацентрическая, Y -хромосома — мелкая акроцентрическая; Х -хромосома и Y -хромосома имеют не только разные размеры, строение, но и по большей части несут разные наборы генов. В зависимости от генного состава в половых хромосомах человека можно выделить следующие участки: 1) негомологичный участок Х -хромосомы (с генами, имеющимися только в Х -хромосоме); 2) гомологичный участок Х -хромосомы и Y -хромосомы (с генами, имеющимися как в Х -хромосоме, так и в Y -хромосоме); 3) негомологичный участок Y -хромосомы (с генами, имеющимися только в Y -хромосоме). В зависимости от локализации гена в свою очередь выделяют следующие типы наследования.

Тип наследования Локализация генов Примеры
Х-сцепленный рецессивный Негомологичный участок Х-хромосомы Гемофилия, разные формы цветовой слепоты (протанопия, дейтеронопия), отсутствие потовых желез, некоторые формы мышечной дистрофии и пр.
Х-сцепленный доминантный Негомологичный участок Х-хромосомы Коричневый цвет зубной эмали, витамин D устойчивый рахит и пр.
Х-Y-сцепленный (частично сцепленный с полом) Гомологичный участок Х- и Y-хромосом Синдром Альпорта, общая цветовая слепота
Y-сцепленный Негомологичный участок Y-хромосомы Перепончатость пальцев ног, гипертрихоз края ушной раковины

 

Большинство генов, сцепленных с Х -хромосомой, отсутствуют в Y -хромосоме, поэтому эти гены (даже рецессивные) будут проявляться фенотипически, так как они представлены в генотипе в единственном числе. Такие гены получили название гемизиготных. Х -хромосома человека содержит ряд генов, рецессивные аллели которых определяют развитие тяжелых аномалий (гемофилия, дальтонизм и пр.). Эти аномалии чаще встречаются у мужчин (так как они гемизиготны), хотя носителем генов, обусловливающих эти аномалии, чаще бывает женщина. Например, если ХА — нормальная свертываемость крови, Ха — гемофилия и если женщина является носительницей гена гемофилии, то у фенотипически здоровых родителей может родиться сын-гемофилик:

Р ♀XAXa норм. сверт. крови × ♂XAY норм. сверт. крови
Типы гамет XA Xa   XA Y
F2 XAXA XАXa ♀ норм. сверт. крови 50%   XАY ♂ норм. сверт. крови 25% XaY ♂ гемофилики 25%

 

Сцепленное наследование

В 1906 году У. Бэтсон и Р. Пеннет, проводя скрещивание растений душистого горошка и анализируя наследование формы пыльцы и окраски цветков, обнаружили, что эти признаки не дают независимого распределения в потомстве, гибриды всегда повторяли признаки родительских форм. Стало ясно, что не для всех признаков характерно независимое распределение в потомстве и свободное комбинирование.

Каждый организм имеет огромное количество признаков, а число хромосом невелико. Следовательно, каждая хромосома несет не один ген, а целую группу генов, отвечающих за развитие разных признаков. Изучением наследования признаков, гены которых локализованы в одной хромосоме, занимался Т. Морган. Если Мендель проводил свои опыты на горохе, то для Моргана основным объектом стала плодовая мушка дрозофила.

Дрозофила каждые две недели при температуре 25 °С дает многочисленное потомство. Самец и самка внешне хорошо различимы — у самца брюшко меньше и темнее. Они имеют всего 8 хромосом в диплоидном наборе, достаточно легко размножаются в пробирках на недорогой питательной среде.

Скрещивая мушку дрозофилу с серым телом и нормальными крыльями с мушкой, имеющей темную окраску тела и зачаточные крылья, в первом поколении Морган получал гибриды, имеющие серое тело и нормальные крылья (ген, определяющий серую окраску брюшка, доминирует над темной окраской, а ген, обусловливающий развитие нормальных крыльев, — над геном недоразвитых). При проведении анализирующего скрещивания самки F1 с самцом, имевшим рецессивные признаки, теоретически ожидалось получить потомство с комбинациями этих признаков в соотношении 1:1:1:1. Однако в потомстве явно преобладали особи с признаками родительских форм (41,5% — серые длиннокрылые и 41,5% — черные с зачаточными крыльями), и лишь незначительная часть мушек имела иное, чем у родителей, сочетание признаков (8,5% — черные длиннокрылые и 8,5% — серые с зачаточными крыльями). Такие результаты могли быть получены только в том случае, если гены, отвечающие за окраску тела и форму крыльев, находятся в одной хромосоме.

1 — некроссоверные гаметы; 2 — кроссоверные гаметы.

Если гены окраски тела и формы крыльев локализованы в одной хромосоме, то при данном скрещивании должны были получиться две группы особей, повторяющие признаки родительских форм, так как материнский организм должен образовывать гаметы только двух типов — АВ и аb, а отцовский — один тип — аb. Следовательно, в потомстве должны образовываться две группы особей, имеющих генотип ААВВ и ааbb. Однако в потомстве появляются особи (пусть и в незначительном количестве) с перекомбинированными признаками, то есть имеющие генотип Ааbb и ааВb. Для того, чтобы объяснить это, необходимо вспомнить механизм образования половых клеток — мейоз. В профазе первого мейотического деления гомологичные хромосомы конъюгируют, и в этот момент между ними может произойти обмен участками. В результате кроссинговера в некоторых клетках происходит обмен участками хромосом между генами А и В, появляются гаметы Аb и аВ, и, как следствие, в потомстве образуются четыре группы фенотипов, как при свободном комбинировании генов. Но, поскольку кроссинговер происходит при образовании небольшой части гамет, числовое соотношение фенотипов не соответствует соотношению 1:1:1:1.

Группа сцепления — гены, локализованные в одной хромосоме и наследующиеся совместно. Количество групп сцепления соответствует гаплоидному набору хромосом.

Сцепленное наследование — наследование признаков, гены которых локализованы в одной хромосоме. Сила сцепления между генами зависит от расстояния между ними: чем дальше гены располагаются друг от друга, тем выше частота кроссинговера и наоборот. Полное сцепление — разновидность сцепленного наследования, при которой гены анализируемых признаков располагаются так близко друг к другу, что кроссинговер между ними становится невозможным. Неполное сцепление — разновидность сцепленного наследования, при которой гены анализируемых признаков располагаются на некотором расстоянии друг от друга, что делает возможным кроссинговер между ними.

Независимое наследование — наследование признаков, гены которых локализованы в разных парах гомологичных хромосом.

Некроссоверные гаметы — гаметы, в процессе образования которых кроссинговер не произошел.

Образуются гаметы:

Кроссоверные гаметы — гаметы, в процессе образования которых произошел кроссинговер. Как правило кроссоверные гаметы составляют небольшую часть от всего количества гамет.

Образуются гаметы:

Нерекомбинанты — гибридные особи, у которых такое же сочетание признаков, как и у родителей.

Рекомбинанты — гибридные особи, имеющие иное сочетание признаков, чем у родителей.

Расстояние между генами измеряется в морганидах — условных единицах, соответствующих проценту кроссоверных гамет или проценту рекомбинантов. Например, расстояние между генами серой окраски тела и длинных крыльев (также черной окраски тела и зачаточных крыльев) у дрозофилы равно 17%, или 17 морганидам.

У дигетерозигот доминантные гены могут располагаться или в одной хромосоме (цис-фаза), или в разных (транс-фаза).

1 — Механизм цис-фазы (некроссоверные гаметы); 2 — механизм транс-фазы (некроссоверные гаметы).

 

Результатом исследований Т. Моргана стало создание им хромосомной теории наследственности:

  1. гены располагаются в хромосомах; различные хромосомы содержат неодинаковое число генов; набор генов каждой из негомологичных хромосом уникален;
  2. каждый ген имеет определенное место (локус) в хромосоме; в идентичных локусах гомологичных хромосом находятся аллельные гены;
  3. гены расположены в хромосомах в определенной линейной последовательности;
  4. гены, локализованные в одной хромосоме, наследуются совместно, образуя группу сцепления; число групп сцепления равно гаплоидному набору хромосом и постоянно для каждого вида организмов;
  5. сцепление генов может нарушаться в процессе кроссинговера, что приводит к образованию рекомбинантных хромосом; частота кроссинговера зависит от расстояния между генами: чем больше расстояние, тем больше величина кроссинговера;
  6. каждый вид имеет характерный только для него набор хромосом — кариотип.

 

47!!

49. Изменчивость. Модификационная изменчивость

ИЗМЕНЧИВОСТЬ

Изменчивость – это способность организмов изменять свои признаки и свойства, что проявляется в разнообразии особей внутри вида.

Различают 2 формы изменчивости:

  1. ненаследственная (фенотипическая) или модификационная
  2. наследственная (генотипическая)

Модификационная изменчивость – это изменчивость фенотипа, которая

является реакцией конкретного генотипа на изменяющиеся условия среды. Они не передаются по наследству и возникают как реакция организма, то есть представляют собой адаптацию.

Модификационная изменчивость характеризуется следующими особенностями:

  1. носит групповой характер
  2. носит обратимый характер
  3. влияние среды может изменять фенотипическое проявление признака. Норма реакции – это предел модификационной изменчивости признака, обусловленный генотипом. Например, такие количественные признаки как масса тела животного, размер листьев растений изменяются довольно в широких пределах, то есть имеют широкую норму реакции. Размеры сердца и мозга изменяются в узких пределах, то есть имеют узкую норму реакции. Норма реакции выражается в виде вариационного ряда.
  4. имеет переходные формы.

Вариационная кривая – это графическое выражение модификационной изменчивости, отражающее размах вариации и частоту встречаемости отдельных вариантов.

Генотипическая изменчивость подразделяется:

  1. комбинативная
  2. мутационная

Комбинативная изменчивость – тип наследственной изменчивости, обусловленной различными перекомбинациями уже имеющихся генов и хромосом. Не сопровождается изменениями структуры генов и хромосом.

Ее источником служат: - рекомбинация генов в результате кроссинговера;

- рекомбинация хромосом в ходе мейоза; - комбинация хромосом в результате слияния половых клеток при оплодотворении.

Мутационная изменчивость – это тип наследственной изменчивости, обусловленной проявлением различных изменений в структуре генов, хромосом или генома.

СРАВНИТЕЛЬНАЯ ХАРАКТЕРИСТИКА ФОРМ ИЗМЕНЧИВОСТИ

характеристика Модификационная изменчивость Мутационная изменчивость
Объект изменения Фенотип в пределах нормы реакции Генотип
Отбирающий фактор Изменение условий окружающей среды Изменение условий окружающей среды
Наследование признаков Не наследуются Наследуются
Изменения в хромосомах Нет изменений Есть при хромосомных мутациях
Изменения в молекуле ДНК Нет изменений Есть при генных мутациях
Значение для особи Повышает или понижает жизнеспособность, продук-тивность, адаптацию Полезные изменения при-водят к победе в борьбе за существование, вредные – к гибели
Значение для вида Способствуют выживанию Приводят к образованию новых популяций, видов
Роль в эволюции Приспособление организмов к условиям среды Материал для естественного отбора
Форма изменчивости Определенная (групповая) Неопределенная (индивидуальная)

Мутационная изменчивость

В основе мутационной изменчивости лежат мутации.

Мутация — стойкое (то есть такое, которое может быть унаследовано потомками данной клетки или организма) изменение генотипа, происходящее под влиянием внешней или внутренней среды. Термин «мутация» впервые предложил голландский ботаник Гуго Де Фриз в 1901 году

Мутации характеризуются рядом свойств:

- возникают внезапно, без переходных форм;

- это качественные изменения, не образуют непрерывных рядов и не группируются вокруг среднего значения;

- имеют ненаправленное действие – под влиянием одного и того же мутагенного фактора любая часть структуры, несущей генетическую информацию;

- передаются из поколения в поколение.

Мутагены – факторы, вызывающие мутации. Подразделяются на три категории:

  1. физические (радиация, электромагнитное излучение, давление, температура и т.д.).
  2. химические (соли тяжелых металлов, пестициды, фенолы, спирты, ферменты, наркотические вещества, лекарственные препараты, пищевые консерванты и т.д.)
  3. биологические (вирусы, паразитные агенты, бактерии).

КЛАССИФИКАЦИЯ МУТАЦИЙ:

  1. По уровню возникновения
  1. генные;
  2. хромосомные;
  3. геномные
  1. По типу аллельных взаимодействий
  1. доминантные;
  2. рецессивные;
  3. промежуточные

По месту возникновения

1. генеративные (происходят в половых клетках);

2. соматические (происходят в соматических клетках)

  1. По способу возникновения
  1. спонтанные (происходят в природе постоянно, но с небольшой частотой);
  2. индуцированные (возникают под воздействием мутагенов)
  1. По влиянию на жизнеспособность особей
  1. летальны (вызывают гибель организма);
  2. вредные (снижают жизнеспособность организма. Выживающие особи имеют отклонение от нормы);
  3. нейтральные (не изменяют вероятность выживания особи или ее потомства при определенных условиях внешней среды);
  4. полезные (увеличивают жизнеспособность особей на 10-15%. Мутации поддерживаются естественным отбором. Возникают новые приспособления к окружающей среде)
  1. По характеру проявления
  1. гипоморфные – мутантные аллели действуют в том же направлении, что и нормальный аллель, но дают ослабленный эффект. Например, окраска глаз у дрозофил при мутациях значительно бледнее естественной);
  2. аморфные – мутантные аллели неактивны в отношении нормального аллеля. Например, ген альбинизма полностью тормозит образование пигмента у животных);
  3. антиморфные – мутантные аллели оказывают противоположное действие нормальному аллелю. Например, исходный аллель дает красную окраску, а мутантный – бурый цвет;
  4. неоморфные – действие мутантных аллелей совершенно отлично от действия нормального аллеля. Например, образование ноги на голове дрозофилы вместо антенн);
  1. По фенотипическому проявлению
  1. морфологические – изменения в строении и свойствах органов, тканей или клеток. Например, коротконогость у овец;
  2. физиологические – изменения физиологических процессов. Например, молочность у животных;
  3. биохимические - изменение синтеза определенных химических веществ в организме. Например, мутации микроорганизмов;
  4. поведенческие. Например, изменение рисунка или фигур брачного танца у дрозофил, что приводит к «непониманию» партнерами и не оставлению потомства.

Обычно ДНК точно копируется при процессе репликации и сохраняется неизменной между двумя последовательными репликациями. Но изредка происходят ошибки и последовательность ДНК меняется - эти ошибки называются мутациями. Мутация это устойчивое наследуемое изменение ДНК, независимо от его функциональной значимости. Это определение подразумевает изменение в первичной нуклеотидной последовательности, а изменения иного рода, например метилирование, обычно относят к эпигенетическим событиям.

Процесс возникновения мутаций именуют мутагенезом, а фактор, вызывающий мутацию, — мутагеном. Организм, приобретший какой-либо новый признак и тем самым изменивший свой фенотип в результате мутации, называют мутантом.

Мутационная изменчивость.

Мутационная изменчивость связана с процессом образования мутаций. Мутации – это внезапные скачкообразные стойкие изменения в структуре генотипа. Организмы у которых произошла мутация называются мутунтами. Мутационная теория была создана, как говорилось выше, Гуго де Фризом в 1901-1903 гг. На основных ее положениях строица современная генетика: мутации, дискретные изменения наследственности, в природе спонтанны, мутации передаются по наследству, встречаются достаточно редко и могут быть различных типов. В зависимости от того какой признак положен в основу, на сегоднешний день существует несколько систем классификации мутаций.

Классификация мутаций

1. По способу возникновения. Различают спонтанные и индуцированные мутации Спонтанные происходят в природе крайне редко с частотой 1-100 на миллион экземпляров данного гена. В настоящие время очевидно, что спонтанный мутационный процесс зависит как от внутренних, так и от внешних факторов, которые называют мутационным давлением среды.

Индуцированные мутации возникают при воздействии на человека мутагенами –факторами, вызывающими мутации. Мутагены же бывают трех видов:

• Физические (радиация, электро – магнитное излучение, давление, температура и т.д.)

• Химические (цитостатики, спирты,фенолы и т.д.)

• Биологические (бактерии и вирусы)

2. По отношению к зачатковому пути. Существуют соматические и генеративные мутации. Генеративные мутации возникают в репродуктивных тканях и поэтому не всегда выявляются. Для того, чтобы выявилась генеративная мутация, необходимо, чтобы мутантная гамета учавствовала в оплодотворении.

3. По адаптивному занчению. Выделяют положительные, отрицательные и нейтральные мутации. Эта классификация связана с оценкой жизнеспособности образовавшегося мутанта.

4. По изменению генотипа. Мутации бывают генные, хромосомные и геномные геномные.

5. По локализации в клетке. Мутации делятся на ядерные и цитоплазматические. Плазматические мутации возникают в результате мутаций в плазмогенах, находящихяс в митохондриях. Полагают, что именно они приводят к мужскому бесплодию. Причем такие мутации в основном наследуются по женской линии.

Спонтанные мутации

изменения, возникающие непроизвольно в совершенно нормальных условиях окружающего мира. Они могут появляться в течение всей жизни организма и затрагивать не только половые клетки, но и соматические.

Причины появления спонтанных мутаций разнообразны. Важно понимать, что в отличие от индуцированных мутаций, для появления которых требуется специальное воздействие определенных факторов, спонтанные мутации не возникают направленно. Для их образования достаточно наличия естественной радиации, резкого изменения температуры воздуха или воды, а так же изменения протекания некоторых химических процессов в организме, в результате которых возникают вещества, вызывающие мутации.

Как эти изменения выглядят? Примеры спонтанных мутаций:

Мутации могут происходит в ДНК или в хромосомах.

1. Изменения ДНК

• инверсия – поворот участка ДНК на 180 градусов и обратная его вставка в нуклеотидную последовательность;

• вставка новой буквы в ДНК;

• утрата участка или одной буквы из генетического кода;

• замена одного нуклеотида на другой;

• удвоение участка ДНК.

2. Изменения хромосом

• потеря участка хромосомы;

• умножение участка;

• обмен участками двух хромосом;

• инверсия участка хромосомы;

• увеличение или уменьшение числа хромосом.

Все это в конечном счёте приводит к изменению хранящейся информации, и как следствие, к перестройкам в организме.

В большинстве своем спонтанные мутации не опасны для организма и не вызывают кардинальных изменений.

Последствия спонтанных мутаций:

1. При мутации гена трансмембранной проходимости возможно развитие муковисцидоза или мужской половой дисфункции.

2. У бактерий устойчивость к определенному виду антибиотиков появляется благодаря спонтанно возникшей мутации.

3. Мутации клеток тела – соматические мутации могут приводить к гиперплазии и новообразованиям.

 

 

Индуцированные мутации.

Индуцированный мутагенез – это искусственное получение мутаций с помощью мутагенов различной природы. Впервые способность ионизирующих излучений вызывать мутации была обнаружена Г.А. Надсоном и Г.С. Филлиповым. Затем, проводя обширные исследования, была установлена радиобиологическая зависимость мутаций. В 1927 году американским ученым Джозефом Мюллером было доказано, что частота мутаций увеличивается с увеличением дозы воздействия. В конце сороковых годов открыли существование мощных химических мутагенов, которые вызывали серьезные повреждения ДНК человека для целого ряда вирусов. Одним из примеров воздействия мутагенов на человека может служить эндомитоз – удвоение хромосом с последующим делением центромер, но без расхождения хромосом.

 

Генные мутации

Генные (точковые) мутации затрагивают, как правило, один или несколько нуклеотидов, при этом один нуклеотид может превратиться в другой, может выпасть(делеция), продублироваться, а группа нуклеотидов может развернутся на 180 градусов. Например, широко известен ген человека, ответственный за серповидно – клеточную анемию, который может привести к летальному исходу. Соответствующий нормальный ген кодирует одну из полипептидныз цепей гемоглобина. У мутантного гена нарушен всего один нуклеотид (ГАА на ГУА). В результате в цепи гемоглобина одна аминокислота заменена на другую(вместо глутамина – валин). Казалось бы ничтожное изменение, но оно влечет за собой роковые последствия: эритроцит деформируется, приобретая серповидно – клеточную форму, и уже не способен транспортировать кислород, что и приводит к гибели организма. Генные мутации приводят к изменению аминокислотной последовательности белка. Наиболее вероятное мутация генов происходит при спаривание тесно связанных организмов, которые унаследовали мутантный ген у общего предка. По этой причине вероятность возникновения мутации повышается у детей, чьи родители являются родственниками. Генные мутации приводят к таким заболеваниям, как амавротическая идиотия, альбинизм, дальтонизм и др.

Интересно, что значимость нуклеотидных мутаций внутри кодона неравнозначна: замена первого и второго нуклеотида всегда приводит к изменению аминокислоты, третий же обычно не приводит к замене белка. К примеру, "Молчащая мутация"- изменение нуклеотидной последовательности, которая приводит к образованию схожего кодона, в результате аминокилотная последовательность белка не меняется.

 

Хромосомные мутации

Хромосомные мутации приводят к изменению числа, размеров и организации хромосом, поэтому их иногда называют хромосомными перестройками. Хромосомные перестройки делятся на внутри- и межхромосомные. К внутрехромосмным относятся:

• Дубликация – один из участков хромосомы представлен более одного раза.

• Делеция – утрачивается внутренний участок хромосомы.

• Инверсия –повороты участка хромосомы на 180 градусов.

Межхромосомные перестройки (их еще называют транслокации) делятся на:

• Реципрокные – обмен участками негомологичных хромосом.

• Нереципрокные – изменение положения участка хромосомы.

• Дицентрические – слияние фрагментов негомологичных хромосом.

• Центрические – слияние центромер негомологичных хромосом.

Хромосомные мутации проявляются у 1% новорожденных. Однако интересно, исследования показали, что нестабильность соматических клеток здоровых доноров не исключение, а норма. В связи с этим была высказана гипотеза о том, что нестабильность соматических клеток следует рассматривать не только как патологическое состояние, но и как адаптивную реакцию организма на измененные условия внутренней среды. Хромосомные мутации могут обладать фенотипическими явлениями. Наиболее распостраненный пример - синдром "Кошачьего крика" (плачь ребенка напоминает мяукание кошки). Обычно носители такой делеции погибают в младенчестве. Хромосомные мутации часто приводят к паталогическим нарушениям в организме, но в то же время хромосомные перестройки сыграли одну из ведущих ролей в эволюции. Так, у человека 23 пары хромосом, а у обезьяны - 24. Таким образом различие составляет всего одна хромосома. Ученые предполагают, что в процессе эволюции произошла хотя бы одна перестройка. Подтверждением этого может служить и тот факт, что 17 хромосома человека отличается от такой же хромосомы шимпанзе лишь одной перецентрической инверсией. Такие рассуждения во многом подтверждают теорию Дарвина.

 

 

Геномные мутации

Главная отличительная черта геномных мутаций связана с нарушением числа хромосом в кариотипе. Эти мутации так же подразделяются на два вида: полиплоидные анеуплоидные.

Полиплоидные мутации ведут к изменению хромосом в кариотипе, которое кратно гаплоидному набору хромосом. Этот синдром впервые был лишь обнаружен в 60-ых годах. Вообще полиплодия характерна в основном для человека, а среди животных встречается крайне редко. При полиплоидии число хромосом в клетке насчитывается по 69 (триплодие), а иногда и по 92 (тетраплодие) хромосомы. Такое изменение ведет практически к 100 % смерти зародыша. Триплодие имеет не только многочисленные пороки, но и приводит к потере жизнеспособности. Тетраплодие встречается еще реже, но так же зачастую приводит к летальному исходу.

Анеуплоидные же мутации приводят к изменению числа хромосом в кариотипе, некратное гаплоидному набору. В результате такой мутации возникают осыби с аномальным чилом хромосом. Как и триплодия, анеуплодия часто приводит к смерти еще на ранних этапах развития зародыша. Причиной же таких последствий является утрата целой группы сцепления генов в кариотипе.

В цело же, механизм возникновения геномных мутаций связан с патологией нарушения нормального расхождения хромосом в мейозе, в результате чего образуются аномальные гаметы, что и ведет к мутации. Изменения в организме связаны с присутствием генетически разнородных клеток. Такой процесс называется мозаицизм.

Геномные мутации одни из самых страшных. Они ведут к таким заболеваниям, как синдром Дауна (трисомия, возникает с частотой 1 больной на 600 новорожденных), синдром Клайнфельтера и др.

52. мутации. Спонтанная и индуцированная

Спонтанные мутации

изменения, возникающие непроизвольно в совершенно нормальных условиях окружающего мира. Они могут появляться в течение всей жизни организма и затрагивать не только половые клетки, но и соматические.

Причины появления спонтанных мутаций разнообразны. Важно понимать, что в отличие от индуцированных мутаций, для появления которых требуется специальное воздействие определенных факторов, спонтанные мутации не возникают направленно. Для их образования достаточно наличия естественной радиации, резкого изменения температуры воздуха или воды, а так же изменения протекания некоторых химических процессов в организме, в результате которых возникают вещества, вызывающие мутации.

Как эти изменения выглядят? Примеры спонтанных мутаций:

Мутации могут происходит в ДНК или в хромосомах.

1. Изменения ДНК

• инверсия – поворот участка ДНК на 180 градусов и обратная его вставка в нуклеотидную последовательность;

• вставка новой буквы в ДНК;

• утрата участка или одной буквы из генетического кода;

• замена одного нуклеотида на другой;

• удвоение участка ДНК.

2. Изменения хромосом

• потеря участка хромосомы;

• умножение участка;

• обмен участками двух хромосом;

• инверсия участка хромосомы;

• увеличение или уменьшение числа хромосом.

Все это в конечном счёте приводит к изменению хранящейся информации, и как следствие, к перестройкам в организме.

В большинстве своем спонтанные мутации не опасны для организма и не вызывают кардинальных изменений.

Последствия спонтанных мутаций:

1. При мутации гена трансмембранной проходимости возможно развитие муковисцидоза или мужской половой дисфункции.

2. У бактерий устойчивость к определенному виду антибиотиков появляется благодаря спонтанно возникшей мутации.

3. Мутации клеток тела – соматические мутации могут приводить к гиперплазии и новообразованиям.

 

 

Индуцированные мутации.

Индуцированный мутагенез – это искусственное получение мутаций с помощью мутагенов различной природы. Впервые способность ионизирующих излучений вызывать мутации была обнаружена Г.А. Надсоном и Г.С. Филлиповым. Затем, проводя обширные исследования, была установлена радиобиологическая зависимость мутаций. В 1927 году американским ученым Джозефом Мюллером было доказано, что частота мутаций увеличивается с увеличением дозы воздействия. В конце сороковых годов открыли существование мощных химических мутагенов, которые вызывали серьезные повреждения ДНК человека для целого ряда вирусов. Одним из примеров воздействия мутагенов на человека может служить эндомитоз – удвоение хромосом с последующим делением центромер, но без расхождения хромосом.

 

56. Генеративные и соматические мутации

Соматические и генеративные мутации.

 

Генеративные и соматические мутации. Мутации могут возникать в клетках любых тканей многоклеточного организма и на любых стадиях его развития. Мутации, возникающие в незрелых и зрелых половых клетках, называют генеративными, а в клетках других тканей — соматическими.

 

Соматические мутации по своей природе ничем не отличаются от генеративных. Необходимость такого разделения вызвана тем, что эволюционная ценность генеративных и соматических мутаций различна и определяется типом размножения организма. Различие генеративных и соматических мутаций состоит также в проявлении и методах их обнаружения.

 

Генеративные мутации происходят в генитальных и половых клетках.

 

Если мутация (генеративная) происходит в генитальных клетках, то мутантный ген могут получить сразу несколько гамет, что увеличит потенциаль-ную способность наследования этой мутации несколькими особями (индиви-дуумами) в потомстве. Если мутация произошла в гамете, то, вероятно, лишь одна особь (индивид) в

Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...