Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

14. Витамины. Понятие о гипо- и гипервитаминозах. Классификация витаминов. Важнейшие представители витаминов. Их биологическое значение




12. Особенности ферментативного катализа. Специфичность действия ферментов. Кинетика ферментативных реакций. Факторы, определяющие скорость ферментативных реакций (температура, концентрация фермента, pH).

Особенности ферментативного катализа.

1. Белковая природа катализатора

2. Исключительно высокая эффективность. Эффективность биологического катализа превышает эффективность неорганического в 109 – 1012

3. Исключительно высокая специфичность:

а) абсолютная, когда фермент работает только со своим субстратом (фумараза с транс-изомерами фумаровой кислоты и не будет с цис-изомерами);

б) групповая - специфичен для узкой группы родственнных субстратов (ферменты ЖКТ)

4. Работает в мягких условиях (t=37, рН 7. 0, определенные осмолярность и солевой состав).

5. Многоуровневая регуляция: регуляция активности на уровне условий среды, на уровне метаболона, на генетическом уровне, тканевом, клеточном, с помощью гормонов и медиаторов, а также с помощью субстратов и продуктов той реакции, которую они катализируют.

6. Кооперативность: ферменты способны организовывать ассоциации - продукт 1-го фермента, является субстратом для 2-го; продукт 2-го - субстратом для 3-го и т. д.

Кроме того, ферменты обладают адаптивностью, т. е. могут изменять свою активность и образовывать новые ассоциации.

7. Способны катализировать как прямую, так и обратную реакции. Направление реакции для многих ферментов определяется соотношением действующих масс.

8. Катализ жестко расписан, т. е. происходит поэтапно.

Специфичность. Высокая специфичность ферментов обусловлена конформационной и электростатической комплементарностью между молекулами субстрата и фермента и уникальной структурной организацией активного центра, что обеспечивает «узнавание», высокое сродство и избирательность протекания одной какой-либо реакции из тысячи других, осуществляющихся одновременно в живых клетках. Относительной (или групповой) специфичностью обладают большинство ферментов, участвующих в процессе пищеварения. Так, для действия некоторых гидролитических ферментов наибольшее значение имеет тип химической связи в молекуле субстрата. Абсолютной специфичностью действия называют способность фермента катализировать превращение только единственного субстрата. Любые изменения (модификации) в структуре субстрата делают его недоступным для действия фермента.

Факторы, определяющие скорость ферментативных реакций (температура, концентрация фермента, рН)

Концентрация фермента. Скорость любой ферментативной реакции непосредственно зависит от концентрации фермента. Линейная зависимость между этими величинами, когда скорость реакции прямо пропорциональна количеству присутствующего фермента, справедлива только в определенных условиях, например в начальный период ферментативной реакции, т. к. в этот период практически не происходит обратной реакции, а концентрация продукта оказывается недостаточной для обратимости реакции. Именно в этом случае скорость реакции (точнее, начальная скорость реакции v) будет пропорциональна концентрации фермента.

Температура Скорость химических реакций зависит и от температуры, поэтому катализируемые ферментами реакции также чувствительны к её изменениям. Установлено, что скорость большинства биохимических реакций повышается в 2 раза при повышении температуры на 10°С и, наоборот, снижается в 2 раза при понижении температуры на 10°С. Этот показатель получил название температурного коэффициента. Однако вследствие белковой природы фермента тепловая денатурация при повышении температуры будет снижать эффективную концентрацию фермента с соответствующим снижением скорости реакции. Так, при температуре, не превышающей 45-50°С, скорость реакции увеличивается.

Величина рН среды Ферменты обычно наиболее активны в пределах узкой зоны концентрации водородных ионов, соответствующей для животных тканей в основном выработанным в процессе эволюции физиологическим значениям рН среды 6, 0–8, 0. При графическом изображении на кривой колоколообразной формы имеется определенная точка, в которой фермент проявляет максимальную активность; эту точку называют оптимумом рН среды для действия данного фермента.

 


13. Активный центр и механизм действия ферментов, специфичность. Формирование фермент-субстратного комплекса. Этапы ферментативного катализа. Молекулярные механизмы ферментативного катализа.

Под активным центром подразумевают уникальную комбинацию а/к остатков в молекуле фермента, обеспечивающую непосредственное связывание ее с молекулой субстрата и прямое участие в акте катализа. В активном центре условно различают каталитический центр, непосредственно вступающий в химическое взаимодействие с субстратом, и связывающий центр, который обеспечивает специфическое сродство к субстрату и формирование его комплекса с ферментом. Обычно активный центр формируют 12-16 аминокислотных остатков, иногда их может быть больше. Кроме аминокислотных остатков, участвующих в формировании активного центра выделяют ещё два их типа: вспомогательные, которые находятся рядом с активным центром и влияют на его реакционную способность; способствующие, которые удалённы АО, влияющие на конформацию всей молекулы фермента.

Процесс ферментативного катализа можно разделить на три стадии:

1) диффузия субстрата к ферменту и стерическое связывание его с активным центром фермента, т. е. образование фермент-субстратного комплекса (ES);

2) преобразование первичного комплекса в один или несколько активированных фермент-субстратных комплексов (ES*, ES**…);

3) отделение продуктов (Р) реакции от активного центра и диффузия его в окружающую среду.

Первая стадия обычно непродолжительна и зависит от концентрации субстрата в среде, а также его диффузии к активному центру фермента. Комплекс образуется практически мгновенно. Субстрат присоединяется к активному центру в нескольких точках, образуя хелатные (клешневидные) комплексы. Присоединение осуществляется связями разного характера, в основном слабыми (водородные, электростатические, гидрофобные, координационные), ковалентные связи встречаются редко.

Вторая стадия наиболее медленная и лимитирует скорость всего катализа в целом. Её длительность зависит от энергии активации данной химической реакции. На этой стадии происходит расшатывание связей субстрата, их разрыв или образование новых связей в результате взаимодействия с активными группами фермента.

Третья стадия практически мгновенна. Она определяется скоростью диффузии продуктов реакции в окружающую среду.

Специфичность. Высокая специфичность ферментов обусловлена конформационной и электростатической комплементарностью между молекулами субстрата и фермента и уникальной структурной организацией активного центра, что обеспечивает «узнавание», высокое сродство и избирательность протекания одной какой-либо реакции из тысячи других, осуществляющихся одновременно в живых клетках. Относительной (или групповой) специфичностью обладают большинство ферментов, участвующих в процессе пищеварения. Так, для действия некоторых гидролитических ферментов наибольшее значение имеет тип химической связи в молекуле субстрата. Абсолютной специфичностью действия называют способность фермента катализировать превращение только единственного субстрата. Любые изменения (модификации) в структуре субстрата делают его недоступным для действия фермента.

 


14. Витамины. Понятие о гипо- и гипервитаминозах. Классификация витаминов. Важнейшие представители витаминов. Их биологическое значение

Витамины представляют собой сборную в химическом отношении группу низкомолекулярных органических веществ, жизненно необходимых для сбалансированного питания.

Гиповитаминоз - паталогическое состояние, обусловленное дефицитом в организме одного либо целой группы витаминов.

Гипервитаминоз — острое расстройство в результате интоксикации сверхвысокой дозой одного или нескольких витаминов.

Все витамины разделяются на две большие группы: жирорастворимые и водорастворимые. Жирорастворимые витамины -эта группа витаминов растворима в жирах и других органических растворителях (хлороформе, бензоле, петролейном эфире). К ней относятся витамины А, D, E, K.

Водорастворимые витамины. К водорастворимым витаминам относятся витамины группы В, аскорбиновая кислота, биотин, пара-аминобензойная кислота. В группу витаминов В входят:

В1 – тиамин (антиневритный)

В2 – рибофлавин

В3 – пантотеновая кислота (антидерматитный)

В6 – пиридоксин (антидерматитный)

Вс – фолиевая кислота (антианемический)

В12 – цианкобаламин (антианемический)

РР – никотиновая кислота (антипелларгический)

Биологическое действие витаминов в организме человека заключается в активном участии этих веществ в обменных процессах. В обмене белков, жиров и углеводов витамины принимают участие либо непосредственно, либо входя в состав сложных ферментных систем. Витамины участвуют в окислительных процессах, в результате которых из углеводов и жиров образуются многочисленные вещества, используемые организмом, как энергетический и пластический материал. Витамины способствуют нормальному росту клеток и развитию всего организма. Важную роль играют витамины в поддержании иммунных реакций организма, обеспечивающих его устойчивость к неблагоприятным факторам окружающей среды. Это имеет существенное значение в профилактике инфекционных заболеваний.

 


Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...