Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

5. Список литературы




 

1. Klein A. A., Arnold P., Bingham R. M. AAGBI guidelines: the use of blood components and their alternatives 2016. Anaesthesia 2016, 71, 829-842.

2. Mitra B, Mori A, Cameron PA et al. Massive blood transfusion and trauma resuscitation. Injury 2007; 38(9): 1023–1029.

3. Mitra B, Mori A, Cameron PA et al. Fresh frozen plasma (FFP) use during massive blood transfusion in trauma resuscitation. Injury 2010; 41(1): 35–39.

4. Como JJ, Dutton RP, Scalea TM et al. Blood transfusion rates in the care of acute trauma. Transfusion 2004; 44: 809-13.

5. Brohi K, Singh J, Hern M et al. Acute traumatic coagulopathy. J Trauma 2003; 54: 1127-30.

6. Hess JR, Brohi K, Dutton RP et al. The coagulopathy of trauma: a review of mechanisms. J Trauma 2008; 65: 748-54.

7. Evans JA, van Wessem KJ, McDougall D, et al. Epidemiology of traumatic deaths: comprehensive population-based assessment. World J Surg. 2010; 34: 158e163.

8. Schoeneberg C, Schilling M, Hussmann B, et al. Preventable and potentially preventable deaths in severely injured patients: a retrospective analysis including patterns of errors. Eur J Trauma Emerg Surg; 2016.

9. Morse BC, Dente CJ, Hodgman EI, et al. Outcomes after massive transfusion in nontrauma patients in the era of damage control resuscitation. Am Surg. 2012; 78(6): 679–684.

10. Maegele M, Lefering R, Yucel N, et al. Early coagulopathy in multiple injury: analysis from the German Trauma Registry on 8724 patients. Injury. 2007; 38: 298e304.

11. Cannon Jeremy W. Hemorrhagic Shock. N Engl J Med 2018; 378: 370-9.

12. Callum J. L., Nascimento B., Alam A. Massive haemorrhage protocol: what’s the best protocol? ISBT Science Series (2016) 11 (Suppl. 1), 297–306.

13. Maegele M, Schochl H, Cohen MJ. An update on the coagulopathy of trauma. Shock. 2014; 41(Suppl 1): 21–25.

14. Klein A. A., Arnold P., Bingham R. M. AAGBI guidelines: the use of blood components and their alternatives 2016. Anaesthesia 2016, 71, 829-842.

15. Schlichtig R, Kramer DJ, Pinsky MR. Flow distribution during progressive hemorrhage is a determinat of critical O2 delivery. J Appl Physiol 1991, 70: 169-178.

16. Мороз В. В., Рыжков И. А. Острая кровопотеря: регионарный кровоток и микроциркуляция. Общая реаниматология. 2016; 12(5): 65-94.

17. Bonanno FG. Physiopathology of shock. Journal of Emergencies, Trauma and Shock. 2011; 4 (2): 222-232.

18. Cannon Jeremy W. Hemorrhagic Shock. N Engl J Med 2018; 378: 370-9.

19. Barbee RW, Reynolds PS, Ward KR. Assessing shock resuscitation strategies by oxygen debt repayment. Shock 2010; 33: 113-22.

20. Nelson DP, King CE, Dodd SL et al. Systemic and intestinal limits of O2 extraction in the dog. J Appl Physiol 1987, 63: 387-394.

21. Boutilier RG: Mechanisms of cell survival in hypoxia and hypothermia. J Exp Biol 2001, 204: 3171-3181.

22. DeLoughery TG. Coagulation defects in trauma patients: etiology, recognition, and therapy. Crit Care Clin. 2004; 20(1): 13–24.

23. Ganter MT, Pittet JF: New insights into acute coagulopathy in trauma patients. Best Pract Res Clin Anaesthesiol 2010; 24: 15–25.

24. White NJ, Ward KR, Pati S et al. Hemorrhagic blood fail- ure: oxygen debt, coagulopathy, and endo- thelial damage. J Trauma Acute Care Surg 2017; 82: Suppl 1: S41-S49.

25. Chang R, Cardenas JC, Wade CE, Hol- comb JB. Advances in the understanding of trauma-induced coagulopathy. Blood 2016; 128: 1043-9.

26. Moore HB, Moore EE, Liras IN, et al. Acute fibrinolysis shutdown after injury occurs frequently and increases mortality: a multicenter evaluation of 2, 540 severely injured patients. J Am Coll Surg 2016; 222: 347-55.

27. Esmon CT: The protein C pathway. Chest 2003; 124(3 suppl): 26S–32S.

28. Rezaie AR: Vitronectin functions as a cofactor for rapid inhibition of activated protein C by plasminogen activator inhibitor-1. Implications for the mechanism of profibrinolytic action of activated protein C. J Biol Chem 2001; 276: 15567–15570.

29. Ganter MT, Pittet JF: New insights into acute coagulopathy in trauma patients. Best Pract Res Clin Anaesthesiol 2010; 24: 15–25.

30. Becker BF, Chappell D, Bruegger D et al. Therapeutic strategies targeting the endothelial glycocalyx: acute deficits, but great potential. Cardiovasc Res. 2010; 87: 300–10.

31. Chappell D, Dorfler N, Jacob M et al. Glycocalyx protection reduces leukocyte adhesion after ischemia/reperfusion. Shock. 2010; 34: 133–9.

32. Ostrowski SR, Johansson PI. Endothelial glycocalyx degradation induces endogenous heparinization in patients with severe injury and early traumatic coagulopathy. J Trauma Acute Care Surg 2012; 73: 60-6.

33. Ostrowski SR, Henriksen HH, Stensballe J et al. Sympathoadrenal activation and endotheliopathy are drivers of hypocoagulability and hyperfibrinolysis in trauma: A prospective observational study of 404 severely injured patients. J Trauma Acute Care Surg 2017; 82: 293-301.

34. Giamarellos-Bourboulis EJ, Kanellakopoulou K, Pelekanou A et al. Kinetics of angiopoietin-2 in serum of multi-trauma patients: correlation with patient severity. Cytokine 2008; 44: 310-3.

35. Brohi K, Cohen MJ, Ganter MT et al. Acute coagulopathy of trauma: hypoperfusion induces systemic anticoagulation and hyperfibrinolysis. J Trauma 2008; 64: 1211–1217.

36. Cotton BA, Gunter OL, Isbell J et al. Damage control hematology: the impact of a trauma exsanguination protocol on survival and blood product utilization. J Trauma 2008; 64: 1177–1182.

37. Martini WZ: Coagulopathy by hypothermia and acidosis: mechanisms of thrombin generation and fibrinogen availability. J Trauma 2009; 67: 202–208.

38. Furie B, Furie BC: Thrombus formation in vivo. J Clin Invest 2005; 115: 3355–3362.

39. Lier H, Krep H, Schroeder S, Stuber F: Preconditions of hemostasis in trauma: a review. The influence of acidosis, hypocalcemia, anemia, and hypothermia on functional hemostasis in trauma. J Trauma 2008; 65: 951–960.

40. Vivien B, Langeron O, Morell E et al. Early hypocalcemia in severe trauma. Crit Care Med 2005; 33: 1946–1952.

41. Martin M, Oh J, Currier H, Tai N, Beekley A, Eckert M, et al. An analysis of in-hospital deaths at a modern combat support hospital. J Trauma. 2009; 66(4 Suppl): S51–60. discussion S60–1.

42. Smith W, Williams A, Agudelo J, Shannon M, Morgan S, Stahel P, et al. Early predictors of mortality in hemodynamically unstable pelvis fractures. J Orthop Trauma. 2007; 21(1): 31–7.

43. Mayglothling J, Duane TM, Gibbs M, McCunn M, Legome E, Eastman AL, et al. Emergency tracheal intubation immediately following traumatic injury: an Eastern Association for the Surgery of Trauma practice management guideline. J Trauma Acute Care Surg. 2012; 73(5 Suppl 4): S333–40.

44. Bernard SA, Nguyen V, Cameron P, Masci K, Fitzgerald M, Cooper DJ, et al. Prehospital rapid sequence intubation improves functional outcome for patients with severe traumatic brain injury: a randomized controlled trial. Ann Surg. 2010; 252(6): 959–65.

45. Jeremitsky E, Omert L, Dunham CM, Protetch J, Rodriguez A. Harbingers of poor outcome the day after severe brain injury: hypothermia, hypoxia, and hypoperfusion. J Trauma. 2003; 54(2): 312–9.

46. Chi JH, Knudson MM, Vassar MJ, McCarthy MC, Shapiro MB, Mallet S, et al. Prehospital hypoxia affects outcome in patients with traumatic brain injury: a prospective multicenter study. J Trauma. 2006; 61(5): 1134–41.

47. Damiani E, Adrario E, Girardis M, Romano R, Pelaia P, Singer M, et al. Arterial hyperoxia and mortality in critically ill patients: a systematic review and meta-analysis. Crit Care. 2014; 18(6): 711.

48. Aufderheide TP, Sigurdsson G, Pirrallo RG, Yannopoulos D, McKnite S, von Briesen C, et al. Hyperventilation-induced hypotension during cardiopulmonary resuscitation. Circulation. 2004; 109(16): 1960–5.

49. Davis DP, Hoyt DB, Ochs M, Fortlage D, Holbrook T, Marshall LK, et al. The effect of paramedic rapid sequence intubation on outcome in patients with severe traumatic brain injury. J Trauma. 2003; 54(3): 444–53.

50. Curley G, Kavanagh BP, Laffey JG. Hypocapnia and the injured brain: more harm than benefit. Crit Care Med. 2010; 38(5): 1348–59.

51. Stevens RD, Shoykhet M, Cadena R. Emergency neurological life support: intracranial hypertension and herniation. Neurocrit Care. 2015; 23 Suppl 2: 76–82.

52. Quinn AC, Sinert R. What is the utility of the Focused Assessment with Sonography in Trauma (FAST) exam in penetrating torso trauma? Injury. 2011; 42(5): 482–7.

53. Fox JC, Boysen M, Gharahbaghian L, Cusick S, Ahmed SS, Anderson CL, et al. Test characteristics of focused assessment of sonography for trauma for clinically significant abdominal free fluid in pediatric blunt abdominal trauma. Acad Emerg Med. 2011; 18(5): 477–82.

54. Linsenmaier U, Krotz M, Hauser H, Rock C, Rieger J, Bohndorf K, et al. Wholebody computed tomography in polytrauma: techniques and management. Eur Radiol. 2002; 12(7): 1728–40.

55. Wherrett LJ, Boulanger BR, McLellan BA, Brenneman FD, Rizoli SB, Culhane J, et al. Hypotension after blunt abdominal trauma: the role of emergent abdominal sonography in surgical triage. J Trauma. 1996; 41(5): 815–20.

56. Caputo N, Fraser R, Paliga A, Kanter M, Hosford K, Madlinger R. Triage vital signs do not correlate with serum lactate or base deficit, and are less predictive of operative intervention in penetrating trauma patients: a prospective cohort study. Emerg Med J. 2013; 30(7): 546–50.

57. 169. Herbert HK, Dechert TA, Wolfe L, Aboutanos MB, Malhotra AK, Ivatury RR, et al. Lactate in trauma: a poor predictor of mortality in the setting of alcohol ingestion. Am Surg. 2011; 77(12): 1576–9.

58. 170. Gustafson ML, Hollosi S, Chumbe JT, Samanta D, Modak A, Bethea A. The effect of ethanol on lactate and base deficit as predictors of morbidity and mortality in trauma. Am J Emerg Med. 2015; 33(5): 607–13.

59. Mutschler M, Nienaber U, Brockamp T, Wafaisade A, Fabian T, Paffrath T, et al. Renaissance of base deficit for the initial assessment of trauma patients: a base deficit-based classification for hypovolemic shock developed on data from 16, 305 patients derived from the TraumaRegister DGU(R). Crit Care. 2013; 17(2): R42.

60. Tauber H, Innerhofer P, Breitkopf R, Westermann I, Beer R, El Attal R, et al. Prevalence and impact of abnormal ROTEM(R) assays in severe blunt trauma: results of the ‘Diagnosis and Treatment of Trauma-Induced Coagulopathy (DIA-TRE-TIC) study’. Br J Anaesth. 2011; 107(3): 378–87.

61. Johansson PI, Stensballe J. Effect of haemostatic control resuscitation on mortality in massively bleeding patients: a before and after study. Vox Sang. 2009; 96(2): 111–8.

62. Maegele M, Lefering R, Yucel N, Tjardes T, Rixen D, Paffrath T, et al. Early coagulopathy in multiple injury: an analysis from the German Trauma Registry on 8724 patients. Injury. 2007; 38(3): 298–304.

63. Hussmann B, Lefering R, Waydhas C, Touma A, Kauther MD, Ruchholtz S, et al. Does increased prehospital replacement volume lead to a poor clinical course and an increased mortality? A matched-pair analysis of 1896 patients of the Trauma Registry of the German Society for Trauma Surgery who were managed by an emergency doctor at the accident site. Injury. 2013; 44(5): 611–7.

64. Madigan MC, Kemp CD, Johnson JC, Cotton BA. Secondary abdominal compartment syndrome after severe extremity injury: are early, aggressive fluid resuscitation strategies to blame? J Trauma. 2008; 64(2): 280–5.

65. Haut ER, Kalish BT, Cotton BA, Efron DT, Haider AH, Stevens KA, et al. Prehospital intravenous fluid administration is associated with higher mortality in trauma patients: a National Trauma Data Bank analysis. Ann Surg. 2011; 253(2): 371–7.

66. Morrison CA, Carrick MM, Norman MA, Scott BG, Welsh FJ, Tsai P, et al. Hypotensive resuscitation strategy reduces transfusion requirements and severe postoperative coagulopathy in trauma patients with hemorrhagic shock: preliminary results of a randomized controlled trial. J Trauma. 2011; 70(3): 652–63.

67. Harrois A, Baudry N, Huet O, Kato H, Dupic L, Lohez M, et al. Norepinephrine decreases fluid requirements and blood loss while preserving intestinal villi microcirculation during fluid resuscitation of uncontrolled hemorrhagic shock in mice. Anesthesiology. 2015; 122(5): 1093–102.

68. Sperry JL, Minei JP, Frankel HL, West MA, Harbrecht BG, Moore EE, et al. Early use of vasopressors after injury: caution before constriction. J Trauma. 2008; 64(1): 9–14.

69. Cohn SM, McCarthy J, Stewart RM, Jonas RB, Dent DL, Michalek JE. Impact of low-dose vasopressin on trauma outcome: prospective randomized study. World J Surg. 2011; 35(2): 430–9.

70. Chowdhury AH, Cox EF, Francis ST, Lobo DN. A randomized, controlled, double-blind crossover study on the effects of 2-L infusions of 0. 9 % saline and plasma-lyte(R) 148 on renal blood flow velocity and renal cortical tissue perfusion in healthy volunteers. Ann Surg. 2012; 256(1): 18–24.

71. Yunos NM, Bellomo R, Hegarty C, Story D, Ho L, Bailey M. Association between a chloride-liberal vs chloride-restrictive intravenous fluid administration strategy and kidney injury in critically ill adults. JAMA. 2012; 308(15): 1566–72.

72. Young JB, Utter GH, Schermer CR, Galante JM, Phan HH, Yang Y, et al. Saline versus Plasma-Lyte A in initial resuscitation of trauma patients: a randomized trial. Ann Surg. 2014; 259(2): 255–62.

73. Perel P, Roberts I, Ker K. Colloids versus crystalloids for fluid resuscitation in critically ill patients. Cochrane Database Syst Rev. 2013; 2: CD000567.

74. Kind SL, Spahn-Nett GH, Emmert MY, Eismon J, Seifert B, Spahn DR, et al. Is dilutional coagulopathy induced by different colloids reversible by replacement of fibrinogen and factor XIII concentrates? Anesth Analg. 2013; 117(5): 1063–71.

75. Wade CE, Grady JJ, Kramer GC. Efficacy of hypertonic saline dextran fluid resuscitation for patients with hypotension from penetrating trauma. J Trauma. 2003; 54(5 Suppl): S144–8.

76. Holst LB, Haase N, Wetterslev J, Wernerman J, Guttormsen AB, Karlsson S, et al. Lower versus higher hemoglobin threshold for transfusion in septic shock. N Engl J Med. 2014; 371(15): 1381–91.

77. Desjardins P, Turgeon AF, Tremblay MH, Lauzier F, Zarychanski R, Boutin A, et al. Hemoglobin levels and transfusions in neurocritically ill patients: a systematic review of comparative studies. Crit Care. 2012; 16(2): R54.

78. Rubiano AM, Sanchez AI, Estebanez G, Peitzman A, Sperry J, Puyana JC. The effect of admission spontaneous hypothermia on patients with severe traumatic brain injury. Injury. 2013; 44(9): 1219–25.

79. Shapiro MB, Jenkins DH, Schwab CW, Rotondo MF. Damage control: collective review. J Trauma. 2000; 49(5): 969–78.

80. Braslow B. Damage control in abdominal trauma. Contemp Surgery. 2006; 62: 65–74.

81. Hsu JM, Pham TN. Damage control in the injured patient. Int J Crit Illn Inj Sci. 2011; 1(1): 66–72.

82. Caba-Doussoux P, Leon-Baltasar JL, Garcia-Fuentes C, Resines-Erasun C. Damage control orthopaedics in severe polytrauma with femur fracture. Injury. 2012; 43 Suppl 2: S42–6.

83. Ertel W, Keel M, Eid K, Platz A, Trentz O. Control of severe hemorrhage using C-clamp and pelvic packing in multiply injured patients with pelvic ring disruption. J Orthop Trauma. 2001; 15(7): 468–74.

84. Brenner M, Hoehn M, Rasmussen TE. Endovascular therapy in trauma. Eur J Trauma Emerg Surg. 2014; 40(6): 671–8.

85. Tanizaki S, Maeda S, Matano H, Sera M, Nagai H, Ishida H. Time to pelvic embolization for hemodynamically unstable pelvic fractures may affect the survival for delays up to 60 min. Injury. 2014; 45(4): 738–41.

86. Seyednejad H, Imani M, Jamieson T, Seifalian AM. Topical haemostatic agents. Br J Surg. 2008; 95(10): 1197–225.

87. Recinos G, Inaba K, Dubose J, Demetriades D, Rhee P. Local and systemic hemostatics in trauma: a review. Ulus Travma Acil Cerrahi Derg. 2008; 14(3): 175–81.

88. Weber CF, Gorlinger K, Meininger D et al. Point-of-care testing: a prospective, randomized clinical trial of efficacy in coagulopathic cardiac surgery patients. Anesthesiology. 2012; 117(3): 531–47.

89. Nakayama Y, Nakajima Y, Tanaka KA et al. Thromboelastometry-guided intraoperative haemostatic management reduces bleeding and red cell transfusion after paediatric cardiac surgery. Br J Anaesth. 2015; 114(1): 91–102.

90. Karkouti K, McCluskey SA, Callum J et al. Evaluation of a novel transfusion algorithm employing point-of-care coagulation assays in cardiac surgery: a retrospective cohort study with interrupted time-series analysis. Anesthesiology. 2015; 122(3): 560–70.

91. Cotton BA, Au BK, Nunez TC et al. Predefined massive transfusion protocols are associated with a reduction in organ failure and postinjury complications. J Trauma. 2009; 66(1): 41–8. discussion 48–9.

92. Maciel JD, Gifford E, Plurad D et al. The impact of a massive transfusion protocol on outcomes among patients with abdominal aortic injuries. Ann Vasc Surg. 2015; 29(4): 764–9.

93. Nascimento B, Callum J, Tien H et al. Effect of a fixed-ratio (1: 1: 1) transfusion protocol versus laboratory-results-guided transfusion in patients with severe trauma: a randomized feasibility trial. CMAJ. 2013; 185(12): E583–9.

94. Nardi G, Agostini V, Rondinelli B et al. Traumainduced coagulopathy: impact of the early coagulation support protocol on blood product consumption, mortality and costs. Crit Care. 2015; 19(1): 83.

95. Holcomb JB, Jenkins D, Rhee P, Johannigman J, Mahoney P, Mehta S, et al. Damage control resuscitation: directly addressing the early coagulopathy of trauma. J Trauma. 2007; 62(2): 307–10.

96. Ketchum L, Hess JR, Hiippala S. Indications for early fresh frozen plasma, cryoprecipitate, and platelet transfusion in trauma. J Trauma. 2006; 60(6 Suppl): S51–8.

97. Holcomb JB, Hess JR. Early massive trauma transfusion: state of the art: editor’s introduction. J Trauma Acute Care Surg. 2006; 60(6): S1–2.

98. Dente CJ, Shaz BH, Nicholas JM, Harris RS, Wyrzykowski AD, Patel S, et al. Improvements in early mortality and coagulopathy are sustained better in patients with blunt trauma after institution of a massive transfusion protocol in a civilian level I trauma center. J Trauma. 2009; 66(6): 1616–24.

99. Holcomb JB, Tilley BC, Baraniuk S, Fox EE, Wade CE, Podbielski JM, et al. Transfusion of plasma, platelets, and red blood cells in a 1: 1: 1 vs a 1: 1: 2 ratio and mortality in patients with severe trauma: the PROPPR randomized clinical trial. JAMA. 2015; 313(5): 471–82.

100. Baraniuk S, Tilley BC, del Junco DJ, Fox EE, van Belle G, Wade CE, et al. Pragmatic Randomized Optimal Platelet and Plasma Ratios (PROPPR) Trial: design, rationale and implementation. Injury. 2014; 45(9): 1287–95.

101. Toy P, Popovsky MA, Abraham E, Ambruso DR, Holness LG, Kopko PM, et al. Transfusion-related acute lung injury: definition and review. Crit Care Med. 2005; 33(4): 721–6.

102. Holness L, Knippen MA, Simmons L, Lachenbruch PA. Fatalities caused by TRALI. Transfus Med Rev. 2004; 18(3): 184–8.

103. CRASH-2 Trial Collaborators, Shakur H, Roberts I, et al. Effects of tranexamic acid on death, vascular occlusive events, and blood transfusion in trauma patients with significant haemorrhage (CRASH-2): a randomised, placebo controlled trial. Lancet. 2010; 376: 23e32.

104. Roberts I, Shakur H, Ker K et al. Antifibrinolytic drugs for acute traumatic injury. Cochrane Database Syst Rev. 2012; 12: CD004896.

105. Roberts I, Prieto-Merino D, Manno D. Mechanism of action of tranexamic acid in bleeding trauma patients: an exploratory analysis of data from the CRASH-2 trial. Crit Care. 2014; 18(6): 685.

106. Roberts I, Shakur H, Afolabi A et al. The importance of early treatment with tranexamic acid in bleeding trauma patients: an exploratory analysis of the CRASH-2 randomised controlled trial. Lancet. 2011; 377(9771): 1096–101. 1101e1091–1092.

107. Roberts I, Perel P, Prieto-Merino D et al. Effect of tranexamic acid on mortality in patients with traumatic bleeding: prespecified analysis of data from randomised controlled trial. BMJ. 2012; 345: e5839.

108. Kozek-Langenecker SA, Ahmed AB., Afshari A et al. Management of severe perioperative bleeding: guidelines from the European Society of Anaesthesiology. Eur J Anaesthesiol 2017; 34: 332–395

109. Rossaint R, Bouillon B, Cerny V et al. The European guideline on management of major bleeding and coagulopathy following trauma: fourth edition. Critical Care 2016; 20: 100.

110. Practice guidelines for perioperative blood management. An updated report by the American Society of Anesthesiologists. Task force on perioperative blood management. Anesthesiology 2015; 122: 241-275.

111. Gayet-Ageron A, Prieto-Merino D, Ker K et al. Effect of treatment delay on the effectiveness and safety of antifibrinolytics in acute severe haemorrhage: a meta-analysis of individual patient-level data from 40138 bleeding patients. Lancet. 2018 Jan 13; 391(10116): 125–132.

112. Hiippala ST, Myllyla GJ, Vahtera EM. Hemostatic factors and replacement of major blood loss with plasma-poor red cell concentrates. Anesth Analg. 1995; 81(2): 360–5.

113. Schö chl H, Cotton B, Inaba K, et al. FIBTEM provides early prediction of massive transfusion in trauma. Crit Care. 2011; 15(6): R265.

114. Stinger HK, Spinella PC, Perkins JG et al. The ratio of fibrinogen to red cells transfused affects survival in casualties receiving massive transfusions at an army combat support hospital. Journal of Trauma 2008; 64(2 Suppl): S79–85. 


115. Schö chl H, Nienaber U, Maegele M et al. Transfusion in trauma: thromboelastometry-guided coagulation factor concentrate-based therapy versus standard fresh frozen plasma-based therapy. Crit Care. 2011; 15(2): R83.

116. Schö chl H, Nienaber U, Hofer G et al. Goal-directed coagulation management of major trauma patients using thromboelastometry (ROTEMW)-guided administration of fibrinogen concentrate and prothrombin complex concentrate. Crit Care 2010, 14: R55.

117. Nardi G, Agostini V, Rondinelli B et al. Traumainduced coagulopathy: impact of the early coagulation support protocol on blood product consumption, mortality and costs. Crit Care. 2015; 19(1): 83.

118. Shaz BH, Dente CJ, Nicholas J et al. Increased number of coagulation products in relationship to red blood cell products transfused improves mortality in trauma patients. Transfusion. 2010; 50(2): 493–500.

119. Counts RB, Haisch C, Simon TL et al. Hemostasis in massively transfused trauma patients. Ann Surg. 1979; 190(1): 91–9.

120. Ciavarella D, Reed RL, Counts RB et al. Clotting factor levels and the risk of diffuse microvascular bleeding in the massively transfused patient. Br J Haematol. 1987; 67(3): 365–8.

121. Stansbury LG, Hess AS, Thompson K et al. The clinical significance of platelet counts in the first 24 hours after severe injury. Transfusion. 2013; 53(4): 783–9.

122. Johansson PI, Stensballe J, Rosenberg I et al. Proactive administration of platelets and plasma for patients with a ruptured abdominal aortic aneurysm: evaluating a change in transfusion practice. Transfusion. 2007; 47(4): 593–8.

123. Joseph B, Aziz H, Zangbar B et al. Acquired coagulopathy of traumatic brain injury defined by routine laboratory tests: which laboratory values matter? J Trauma Acute Care Surg. 2014; 76(1): 121–5.

124. Kashuk JL, Moore EE, Johnson JL et al. Postinjury life threatening coagulopathy: is 1: 1 fresh frozen plasma: packed red blood cells the answer? Journal of Trauma 2008; 65(2): 261–270.

125. Nekludov M, Bellander BM, Blomback M, Wallen HN. Platelet dysfunction in patients with severe traumatic brain injury. J Neurotrauma. 2007; 24(11): 1699–706.

126. Wohlauer MV, Moore EE, Thomas S et al. Early platelet dysfunction: an unrecognized role in the acute coagulopathy of trauma. J Am Coll Surg. 2012; 214(5): 739–46.

127. Holcomb JB, Wade CE, Michalek JE et al. Increased plasma and platelet to red blood cell ratios improves outcome in 466 massively transfused civilian trauma patients. Ann Surg. 2008; 248(3): 447–58.

128. Zink KA, Sambasivan CN, Holcomb JB et al. A high ratio of plasma and platelets to packed red blood cells in the first 6 hours of massive transfusion improves outcomes in a large multicenter study. Am J Surg. 2009; 197(5): 565–70. discussion 570.

129. McQuilten ZK, Crighton G, Engelbrecht et al. Transfusion interventions in critical bleeding requiring massive transfusion: a systematic review. Transfus Med Rev. 2015; 29(2): 127–37.

130. Ho KM, Leonard AD. Concentration-dependent effect of hypocalcaemia on mortality of patients with critical bleeding requiring massive transfusion: a cohort study. Anaesth Intensive Care. 2011; 39(1): 46–54.

131. Lier H, Krep H, Schroeder S, Stuber F. Preconditions of hemostasis in trauma: a review. The influence of acidosis, hypocalcemia, anemia, and hypothermia on functional hemostasis in trauma. J Trauma. 2008; 65(4): 951–60.

132. Perkins JG, Cap AP, Weiss BM et al. Massive transfusion and nonsurgical hemostatic agents. Crit Care Med. 2008; 36(7 Suppl): S325–39.

133. Quinlan DJ, Eikelboom JW, Weitz JI. Four-factor prothrombin complex concentrate for urgent reversal of vitamin K antagonists in patients with major bleeding. Circulation. 2013; 128(11): 1179–81.

134. Sarode R, Milling Jr TJ, Refaai MA et al. Efficacy and safety of a 4-factor prothrombin complex concentrate in patients on vitamin K antagonists presenting with major bleeding: a randomized, plasma-controlled, phase IIIb study. Circulation. 2013; 128(11): 1234–43.

135. Goldstein JN, Refaai MA, Milling Jr TJ et al. Four-factor prothrombin complex concentrate versus plasma for rapid vitamin K antagonist reversal in patients needing urgent surgical or invasive interventions: a phase 3b, open-label, non-inferiority, randomised trial. Lancet. 2015; 385(9982): 2077–87.

136. Huttner HB, Schellinger PD, Hartmann M et al. Hematoma growth and outcome in treated neurocritical care patients with intracerebral hemorrhage related to oral anticoagulant therapy: comparison of acute treatment strategies using vitamin K, fresh frozen plasma, and prothrombin complex concentrates. Stroke. 2006; 37(6): 1465–70.

137. Edavettal M, Rogers A, Rogers F et al. Prothrombin complex concentrate accelerates international normalized ratio reversal and diminishes the extension of intracranial hemorrhage in geriatric trauma patients. Am Surg. 2014; 80(4): 372–6.

138. Baglin TP, Keeling DM, Watson HG. Guidelines on oral anticoagulation (warfarin): third edition–2005 update. Br J Haematol. 2006; 132(3): 277–85.

139. Knudson MM, Cohen MJ, Reidy R et al. Trauma, transfusions, and use of recombinant factor VIIa: a multicenter case registry report of 380 patients from the Western Trauma Association. J Am Coll Surg. 2011; 212(1): 87–95.

140. Mitra B, Cameron PA, Parr MJ, Phillips L. Recombinant factor VIIa in trauma patients with the ‘triad of death’. Injury. 2012; 43(9): 1409–14.

141. Hauser CJ, Boffard K, Dutton R et al. Results of the CONTROL trial: efficacy and safety of recombinant activated Factor VII in the management of refractory traumatic hemorrhage. J Trauma. 2010; 69(3): 489–500.

142. Shen X, Dutcher SK, Palmer J, Liu X, Kiptanui Z, Khokhar B, Al-Jawadi MH, Zhu Y, Zuckerman IH: A systematic review of the benefits and risks of anticoagulation following traumatic brain injury. J Head Trauma Rehabil. 2015; 30(4): E29-37.

143. Alhazzani W, Lim W, Jaeschke RZ, Murad MH, Cade J, Cook DJ. Heparin thromboprophylaxis in medical-surgical critically ill patients: a systematic review and meta-analysis of randomized trials. Crit Care Med. 2013; 41(9): 2088–98.

144. Lim W, Meade M, Lauzier F, Zarychanski R, Mehta S, Lamontagne F, et al. Failure of anticoagulant thromboprophylaxis: risk factors in medical-surgical critically ill patients. Crit Care Med. 2015; 43(2): 401–10.

Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...