Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

Включения цитоплазмы и вещества запаса в растительных и животных клетках




Включения цитоплазмы и вещества запаса в растительных и животных клетках

1. Классификация включений.

2. Характеристика трофических включений.

3. Особенности секреторных и экскреторных включений.

4. Характеристика пигментных включений.

 Включения цитоплазмы - временные ее компоненты, обусловленные накоплением продуктов метаболизма клеток. Традиционно подразделяются на трофические, секреторные, экскреторные и пигментные.

Трофические включения разделяют в зависимости от природы накапливаемого вещества. Липидные включения встречаются в виде липидных капель (особенно крупных в жировых клетках), которые располагаются в цитоплазме по отдельности или сливаются друг с другом. Их вид на электронно-микроскопических фотографиях варьирует в зависимости от способа фиксации. На гистологических препаратах они обычно имеют вид светлых (" пустых" ) вакуолей, так как при стандартных методах обработки ткани липиды растворяются. Липидные капли служат источником веществ, используемых в качестве энергетических субстратов; в некоторых клетках (например, продуцирующих стероидные гормоны) они могут содержать субстраты, необходимые для последующего синтеза. Из углеводных трофических включений наиболее распространены гранулы гликогена, представляющего собой полимер глюкозы. Они встречаются в виде плотных гранул диаметром 20-30 нм (β -частиц), которые часто образуют скопления (розетки), называемые α -частицами. Гранулы гликогена часто расположены вблизи аЭПС и используются в качестве источника энергии.

Секреторные включения обычно имеют вид мембранных пузырьков, содержащих секретируемый клеткой продукт; в мембране могут находиться ферменты, осуществляющие конечный процессинг продукта по мере перемещения пузырька к плазмолемме. Избыток невостребованного секреторного продукта поглощается и разрушается в цитоплазме клетки механизмом кринофагии.

Экскреторные включения по своему строению сходны секреторными, однако они содержат вредные продукты метаболизма, подлежащие удалению из клетки.

Пигментные включения представляют собой скопления эндогенных или экзогенных пигментов, которые могут окружаться мембраной. К наиболее распространенным эндогенным пигментам относятся гемоглобин (растворен в цитоплазме эритроцитов, переносит кислород), гемосидерин (продукт обмена гемоглобина, накапливается в макрофагах в виде мелких плотных частиц ферритина), меланин (синтезируется в пигментных клетках - меланоцитах, в которых он накапливается и химически дозревает в окруженных мембраной гранулах - меланосомах); липофусцин (пигмент старения, накапливается в виде мембранных гранул с плотным содержимым, в котором определяются липидные капли).

Строение и функциональное значение ядра

1. Общая морфология ядра на световом и электронно-микроскопическом уровнях.

2. Строение и функции кариолеммы, комплекса ядерной коры, хроматина, кариоплазмы и ядрышка.  

Ядро является важнейшим компонентом клетки, содержащим ее генетический аппарат.

Функции ядра :

1 хранение генетической информации (в молекулах ДНК, находящихся в хромосомах);

2 реализацию генетической информации, контролирующей осуществление разнообразных процессов в клетке - от синтетических до запрограммированной гибели (апоптоза);

3 воспроизведение и передачу генетической информации (при делении клетки).

Ядерная оболочка (кариолемма) на светооптическом уровне практически не определяется; под электронным микроскопом обнаруживается, что она состоит из двух мембран - наружной и внутренней, - разделенных полостью шириной 15-40 нм (перинуклеарным пространством) и смыкающихся в области ядерных пор.

Наружная мембрана составляет единое целое с мембранами грЭПС - на ее поверхности имеются рибосомы, а перинуклеарное пространство соответствует полости цистерн грЭПС и может содержать синтезированный материал. Со стороны цитоплазмы наружная мембрана окружена рыхлой сетью промежуточных (виментиновых) филаментов.

Внутренняя мембрана - гладкая, ее интегральные белки связаны с ядерной пластинкой - ламиной - слоем толщиной 80-300 нм, состоящим из переплетенных промежуточных филаментов (ламинов), образующих кариоскелет. Ламина играет очень важную роль в: (1) поддержании формы ядра; (2) упорядоченной укладке хроматина; (3) структурной организации паровых комплексов; (4) формировании кариолеммы при делении клеток.

Ядерные поры занимают 3-35% поверхности ядерной оболочки. Они более многочисленны в ядрах интенсивно функционирующих клеток и отсутствуют в ядрах спермиев. Поры содержат два параллельных кольца (по одному с каждой поверхности кариолеммы) диаметром 80 нм, которые образованы 8 белковыми гранулами. От этих гранул к центру сходятся фибриллы, формирующие перегородку (диафрагму) толщиной около 5 нм, в середине которой лежит центральная гранула (по некоторым представлениям, это - транспортируемая через пору субъединица рибосомы). Совокупность структур, связанных с ядерной порой, называется комплексом ядерной поры. Последний образует водный канал диаметром 9 нм, по которому движутся мелкие водорастворимые молекулы и ионы.

Функции комплекса ядерной поры :

1. Обеспечение регуляции избирательного транспорта веществ между цитоплазмой и ядром.

2. Активный перенос в ядро белков, имеющих особую маркировку в виде так называемой последовательности ядерной локализации - Nuclear Localization Sequence (NLS), распознаваемой рецепторами NLS (в комплексе поры).

3. Перенос в цитоплазму субъединиц рибосом, которые, однако, слишком велики для свободного прохождения пор; их транспорт, вероятно, сопровождается изменением конформации перового комплекса.

Хроматин (от греч. chroma - краска) мелкие зернышки и глыбки материала, который обнаруживается в ядре клеток и окрашивается основными красителями. Хроматин состоит из комплекса ДНК и белка и соответствует хромосомам, которые в интерфазном ядре представлены длинными, тонкими перекрученными нитями и неразличимы как индивидуальные структуры. Выраженность спирализации каждой из хромосом неодинакова по их длине. Различают два вида хроматина - эухроматин и гетерохроматин.

Эухроматин соответствует сегментам хромосом, которые деспирализованы и открыты для транскрипции. Эти сегменты не окрашиваются и не видны в световой микроскоп.

Гетерохроматин соответствует конденсированным, плотно скрученным сегментам хромосом (что делает их недоступными для транскрипции). Он интенсивно окрашивается основными красителями, и в световом микроскопе имеет вид гранул.

Тельце Барра - скопление гетерохроматина, соответствующее одной Х- хромосоме у особей женского пола, которая в интерфазе плотно скручена и неактивна. В большинстве клеток оно лежит у кариолеммы, а в гранулоцитах крови имеет вид маленькой добавочной дольки ядра (" барабанной палочки" ). Выявление тельца Барра (обычно в эпителиальных клетках слизистой оболочки полости рта) используется как диагностический тест для определения генетического пола (обязателен, в частности, для женщин, участвующих в Олимпийских Играх).

Уровни упаковки хроматина. Начальный уровень упаковки хроматина, обеспечивающий образование нуклеосомной нити диаметром 11 нм, обусловлен намоткой двойной нити ДНК (диаметром 2 нм) на блоки дисковидной формы из 8 гистоновых молекул (нуклеосомы). Нуклеосомы разделены короткими участками свободной ДНК. Второй уровень упаковки также обусловлен гистонами и приводит к скручиванию нуклеосомной нити с формированием хроматиновой фибриллы диаметром 30 нм. В интерфазе хромосомы образованы хроматиновыми фибриллами, причем каждая хроматида состоит из одной фибриллы. При дальнейшей упаковке хроматиновые фибриллы образуют петли (петельные домены) диаметром 300 нм, каждый из которых соответствует одному или нескольким генам, а те, в свою очередь, в результате еще более компактной укладки, формируют участки конденсированных хромосом, которые выявляются лишь при делении клеток.

Ядрышко образовано специализированными участками (петлями) хромосом, которые называются ядрышковыми организаторами. У человека такие участки имеются в пяти хромосомах - 13-й, 14-й, 15-й, 21-й и 22-й, где располагаются многочисленные копии генов, кодирующих рибосомальные РНК (рРНК). Ядрышко исчезает в профазе митоза, когда ядрышковые организаторы " растаскиваются" в ходе конденсации соответствующих хромосом, вновь формируясь в телофазе.

Функции ядрышка заключаются в синтезе рРНК и ее сборке в предшественники рибосомальных субъединиц.

Ядрышко выявляется в интерфазном ядре на светооптическом уровне как мелкая плотная гранула диаметром 1-3 мкм, интенсивно окрашивающаяся основными красителями. Оно располагается в центре ядра или эксцентрично, содержит высокие концентрации РНП. Размеры и число ядрышек увеличиваются при повышении функциональной активности клетки. Особенно крупные ядрышки характерны для эмбриональных и активно синтезирующих белки клеток, а также клеток быстрорастущих злокачественных опухолей.

Под электронным микроскопом в ядрышке обнаруживают три компонента - фибриллярный, гранулярный и аморфный.

Кариоплазма (ядерный сок) - жидкий компонент ядра, в котором располагаются хроматин и ядрышко. Содержит воду и ряд растворенных и взвешенных в ней веществ: РНК, гликопротеинов, ионов, ферментов, метаболитов.

Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...