Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

Случайные события и вероятность.




Выпускник научится находить относительную частоту и вероятность случай­ного события.

Выпускник получит возможность приобрести опыт проведения случай­ных экспериментов, в том числе с помощью компьютерного моделирова­ния, интерпретации их результатов.

Комбинаторика.

Выпускник научится решать комбинаторные задачи на нахождение числа объектов или комбинаций.

Выпускник получит возможность научиться некоторым специальным приёмам решения комбинаторных задач.

Наглядная геометрия.

Выпускник научится:

• распознавать на чертежах, рисунках, моделях и в окружающем мире пло­ские и простран­ственные геометрические фигуры;

• вычислять объём прямоугольного параллелепипеда.

Выпускник получит возможность:

• научиться вычислять объёмы пространственных геометрических фи­гур, составлен­ных из прямоугольных параллелепипедов;

• распознавать развёртки куба, прямоугольного параллелепипеда, правиль­ной пира­миды, цилиндра и конуса;

• строить развёртки куба и прямоугольного параллелепипеда;

• определять по линейным размерам развёртки фигуры линейные раз­меры самой фи­гуры и наоборот;

• углубить и развить представления о пространственных геометриче­ских фигурах;

• научиться применять понятие развёртки для выполнения практиче­ских расчётов.

Геометрические фигуры.

Выпускник научится:

• пользоваться языком геометрии для описания предметов окружающего мира и их взаим­ного расположения;

• распознавать и изображать на чертежах и рисунках геометрические фи­гуры и их конфи­гурации;

• находить значения длин линейных элементов фигур и их отношения, гра­дусную меру углов от 0 до 180, применяя определения, свойства и при­знаки фигур и их элемен­тов, отношения фигур (равенство, подобие, симмет­рии, поворот, параллельный перенос);

• оперировать с начальными понятиями тригонометрии и выполнять элемен­тарные опера­ции над функциями углов;

• решать задачи на доказательство, опираясь на изученные свойства фи­гур и отноше­ний между ними и применяя изученные методы доказательств;

• решать несложные задачи на построение, применяя основные алго­ритмы построения с помощью циркуля и линейки;

• решать простейшие планиметрические задачи в пространстве.

Выпускник получит возможность:

• овладеть методами решения задач на вычисления и доказательства: методом от против­ного, методом подобия, методом перебора вариан­тов и методом геометрических мест точек;

• приобрести опыт применения алгебраического и тригонометриче­ского аппарата и идей движения при решении геометрических задач;

• овладеть традиционной схемой решения задач на построение с помо­щью циркуля и ли­нейки: анализ, построение, доказательство и исследова­ние;

• научиться решать задачи на построение методом геометрического места точек и мето­дом подобия;

• приобрести опыт исследования свойств планиметрических фигур с по­мощью компьютер­ных программ;

• приобрести опыт выполнения проектов по темам «Геометрические пре­образования на плоскости», «Построение отрезков по формуле».

Измерение геометрических величин.

Выпускник научится:

• использовать свойства измерения длин, площадей и углов при реше­нии задач на нахожде­ние длины отрезка, длины окружности, длины дуги окруж­ности, градусной меры угла;

• вычислять площади треугольников, прямоугольников, параллелограммов, трапеций, кру­гов и секторов;

• вычислять длину окружности, длину дуги окружности;

• вычислять длины линейных элементов фигур и их углы, используя фор­мулы длины ок­ружности и длины дуги окружности, формулы площадей фи­гур;

• решать задачи на доказательство с использованием формул длины окруж­ности и длины дуги окружности, формул площадей фигур;

• решать практические задачи, связанные с нахождением геометриче­ских величин (исполь­зуя при необходимости справочники и технические сред­ства).

Выпускник получит возможность научиться:

• вычислять площади фигур, составленных из двух или более прямоугольни­ков, параллело­граммов, треугольников, круга и сектора;

• вычислять площади многоугольников, используя отношения равновелико­сти и равносос­тавленности;

• применять алгебраический и тригонометрический аппарат и идеи движе­ния при реше­нии задач на вычисление площадей многоугольников.

Координаты.

Выпускник научится:

• вычислять длину отрезка по координатам его концов; вычислять коорди­наты сере­дины отрезка;

• использовать координатный метод для изучения свойств прямых и окруж­ностей.

Выпускник получит возможность:

• овладеть координатным методом решения задач на вычисления и дока­зательства;

• приобрести опыт использования компьютерных программ для ана­лиза частных слу­чаев взаимного расположения окружностей и прямых;

• приобрести опыт выполнения проектов на тему «Применение коорди­натного метода при решении задач на вычисления и доказатель­ства».

Векторы.

Выпускник научится:

• оперировать с векторами: находить сумму и разность двух векторов, задан­ных геометри­чески, находить вектор, равный произведению заданного вектора на число;

• находить для векторов, заданных координатами: длину вектора, коорди­наты суммы и разности двух и более векторов, координаты произведе­ния вектора на число, применяя при необходимости сочетатель­ный, переместительный и распределительный законы;

• вычислять скалярное произведение векторов, находить угол между векто­рами, устанавли­вать перпендикулярность прямых.

Выпускник получит возможность:

• овладеть векторным методом для решения задач на вычисления и дока­зательства;

• приобрести опыт выполнения проектов на тему «применение вектор­ного метода при ре­шении задач на вычисления и доказательства».

 

Оценка планируемых результатов

Система оценки достижения планируемых результатов освоения основной образователь­ной программыосновного общего образования предполагает комплексный подход к оценке результатов образования, позволяющий вести оценку достижения обучаю­щимися всех трёх групп результатов образования: личностных, метапредмет­ных и предметных.

Система оценки предусматривает уровневый подход к содержанию оценки и инструмента­рию для оценки достижения планируемых результатов, а также к представле­нию и интерпретации результатов измерений.

Одним из проявлений уровневого подхода является оценка индивидуальных образователь­ных достижений на основе«метода сложения», при котором фиксируется дости­жение уровня, необходимого для успешного продолжения образования и реально достигаемого большинством учащихся, и его превышение, что позволяет выстраивать индиви­дуальные траектории движения с учётом зоны ближайшего развития, формировать положительную учебную и социальную мотивацию.

Система оценки достижения планируемых результатов освоения основной образователь­ной программыосновного общего образования предполагает комплексный подход к оценке результатов образования, позволяющий вести оценку достижения обучаю­щимися всех трёх групп результатов образования: личностных, метапредмет­ных и предметных.

Система оценки предусматривает уровневый подход к содержанию оценки и инструмента­рию для оценки достижения планируемых результатов, а также к представле­нию и интерпретации результатов измерений.

Одним из проявлений уровневого подхода является оценка индивидуальных образователь­ных достижений на основе«метода сложения», при котором фиксируется дости­жение уровня, необходимого для успешного продолжения образования и реально достигаемого большинством учащихся, и его превышение, что позволяет выстраивать индиви­дуальные траектории движения с учётом зоны ближайшего развития, формировать положительную учебную и социальную мотивацию.

 

Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...