Теоретичні відомості
Автоколивання – специфічний режим роботи нелінійних систем, що відповідає стійким незатухаючим коливанням з певною амплітудою й частотою. Автоколивання можуть виникати тільки у нелінійних системах. Принципова різниця цих коливань від незатухаючих коливань у лінійних системах полягає в тому, що відхилення параметрів автоколивань (амплітуди, частоти і т.д.) малим зміщенням у процесі подальшого руху зменшується. У попередній лабораторній роботі було наведено, що незатухаючим коливанням відповідає замкнута фазова траєкторія (замкнутий цикл). Цей цикл, який називають граничним, є ізольованим: він обмежений траєкторіями, що навиваються на нього (рис. 9.1, а) або скручуються з нього (рис. 9.1, б).
Рис. 9.1 - Граничний цикл з траєкторіями, що навиваються (а) на нього і скручуються з нього (б)
Якщо у результаті малого зміщення з граничного циклу в будь-якому напрямку ми попадаємо на траєкторію, що необмежено наближається до циклу, то цикл стійкий (рис. 9.1, а). Стійкий граничний цикл на фазовій площині розмежовує два процеси: - коливальний процес, що розходиться (крива 1, рис. 9.2), який виникає при малих початкових відхиленнях; - затухаючий коливальний процес (крива 2, рис. 9.2), що виникає при значних відхиленнях. Із рисунка випливає, що рівноважний стан системи нестійкий. Але процес розходиться до певної амплітуди , тобто практично коливальний процес буде стійким, бо при одних початкових значеннях він розходиться, а при інших – затухає. У системі, фазовий портрет якої наведено на рис. 9.1, а), автоколивання виникають ніби “самі по собі” від як завгодно малого збурення. Збудження коливань такого роду називають м’яким.
Рис. 9.2 - Автоколивання у нелінійних системах: 1 – коливальний процес, що розходиться; 2 – затухаючий коливальний процес; 3 – періодичний коливальний процес з постійною амплітудою а0 і постійною частотою w0
Уявимо фазовий портрет із двома циклами: внутрішнім нестійким і зовнішнім стійким (рис. 9.3).
Початок координат – стійкий фокус. Усередині внутрішнього циклу рух з часом зупиняється, автоколивання не виникають. Щоб їх збудити, необхідний досить сильний поштовх, який виведе початкову точку за граничний нестійкий цикл. Це система із жорстким збудженням автоколивань. Нестійкий граничний цикл обмежує у фазовій площині зону допустимих початкових збуджень, за яких стан рівноваги ще залишається стійким. Слід зазначити, що автоколивання не є змушеними коливаннями. Вони є власними вільними коливаннями системи і мають цілком визначену амплітуду і частоту, які не залежать від початкових умов процесу, а залежать тільки від параметрів самої системи, тобто об’єкта і регулятора. Система, в якій виникають автоколивання, може вважатись практично стійкою і придатною для потреб регулювання, якщо амплітуда коливань a0 незначна і частота їх безпечна, тобто накладення цих коливань на постійне значення вихідної величини практично допустиме за технічними вимогами. Автоколивання можуть виникати не лише у САК. До автоколивальних систем можна віднести ламповий генератор, годинник, поршневий двигун, духовий інструмент. Автоколивальний характер носять і такі процеси у живих організмах, як дихання та робота серця. Отже, можна дати таке визначення автоколивальній системі: система, здатна створювати незатухаючі коливання, якщо вона характеризується наявністю: джерела живлення; клапана, що регулює надходження енергії у коливальну систему; зворотного зв’язку з коливальної системи на клапан. Одним із методів дослідження автоколивань є метод гармонічного балансу. Він дозволяє визначити умови появи та параметри автоколивань як у системах другого порядку, так і в більш складних системах, може використовуватися у випадку, коли характеристика нелінійного елемента є неоднозначною. При цьому метод має достатню для практичних потреб точність і, що найбільш важливо, найкоротшим шляхом приводить до безпосереднього вираження потрібних залежностей амплітуди і частоти автоколивань від параметрів системи. Це полегшує задачу як загального аналізу властивостей даної САК, так і вибір її структури та параметрів під час проектування чи налагодження системи.
Метод ґрунтується на гіпотезі фільтра, відповідно до якої вважається, що автоколивання наближено можна знайти у синусоїдальній формі: , (9.1) тобто, лінійна частина системи є достатньо інерційною і не пропускає високочастотні гармоніки коливань (являє собою фільтр низьких частот). При цьому слід пам’ятати, що на виході нелінійного елемента буде з’являтись періодичний сигнал, форма якого залежить від характеру нелінійності й в загальному випадку суттєво відрізняється від синусоїдальної (так, наприклад, на виході ідеального реле утворюється періодичний сигнал прямокутної форми). Розглянемо простий контур регулювання (рис. 9.4). Система не зазнає зовнішніх впливів, тобто . Перші гармоніки величин x та y на вході й на виході нелінійного елемента дорівнюють: Зазначимо, що , тоді отримаємо такий вираз для y: . (9.2) В операційній формі запису: . (9.3) Коефіцієнти g і b називають гармонічними коефіцієнтами передачі нелінійного елемента або коефіцієнтами гармонічної лінеаризації. Ці коефіцієнти є функціями амплітуди: ; . Вони залежать від виду нелінійності. Для однозначних характеристик , для петльових характеристик гістерезисного типу завжди є від’ємною величиною. У таблиці 9.1 наведені коефіцієнти g і b для основних нелінійностей. Таблиця 9.1
Читайте также: Воспользуйтесь поиском по сайту: ©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...
|