Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

Чем дальше в лес, тем больше дров (Виды сложных суждений)




 

В зависимости от союза, с помощью которого простые суждения соединяются в сложные, выделяется пять видов сложных суждений: конъюнктивные, дизъюнктивные, импликативные, эквивалентные и отрицательные суждения.

Конъюнктивное суждение (конъюнкция) – это сложное суждение с соединительным союзом И, который обозначается в логике условным знаком «∧». С помощью этого знака конъюнктивное суждение, состоящее из двух простых суждений, можно представить в виде формулы: аb (читается «а и b»), где а и b – это два каких-либо простых суждения. Например, сложное суждение: Сверкнула молния, и загремел гром является конъюнкцией (соединением) двух простых суждений: Сверкнула молния и Загремел гром. Конъюнкция может состоять не только из двух, но и из большего числа простых суждений. Например: Сверкнула молния, и загремел гром, и пошел дождь (аbс).

Дизъюнктивное суждение (дизъюнкция) – это сложное суждение с разделительным союзом ИЛИ. Вспомним, что, говоря о логических операциях сложения и умножения понятий, мы отмечали неоднозначность этого союза – он может использоваться как в нестрогом (неисключающем) значении, так и в строгом (исключающем). Неудивительно поэтому, что дизъюнктивные суждения делятся на два вида: нестрогая и строгая дизъюнкция соответственно.

Нестрогая дизъюнкция – это сложное суждение с разделительным союзом ИЛИ в его нестрогом (неисключающем) значении, который обозначается знаком «∨». С помощью этого знака нестрогое дизъюнктивное суждение, состоящее из двух простых суждений, можно представить в виде формулы: ab (читается «а или b»), где а и b – это два простых суждения. Например, сложное суждение Он изучает английский, или он изучает немецкий является нестрогой дизъюнкцией (разделением) двух простых суждений: Он изучает английский и Он изучает немецкий. Эти суждения друг друга не исключают, ведь возможно изучать и английский, и немецкий одновременно, поэтому данная дизъюнкция является нестрогой.

Строгая дизъюнкция – это сложное суждение с разделительным союзом ИЛИ в его строгом (исключающем) значении, который обозначается знаком «∨_». С помощью этого знака строгое дизъюнктивное суждение, состоящее из двух простых суждений, можно представить в виде формулы: а ∨_ b (читается «или а, или b»), где а и b – это два простых суждения. Например, сложное суждение: Он учится в 9 классе, или он учится в 11 классе является строгой дизъюнкцией (разделением) двух простых суждений: Он учится в 9 классе, Он учится в 11 классе. Обратим внимание на то, что эти суждения друг друга исключают, ведь невозможно одновременно учиться и в 9, и в 11 классе (если он учится в 9 классе, то точно не учится в 11 классе, и наоборот), в силу чего данная дизъюнкция является строгой.

Как нестрогая, так и строгая дизъюнкции могут состоять не только из двух, но и из большего числа простых суждений. Например: Он изучает английский, или он изучает немецкий, или он изучает французский (abс); Он учится в 9 классе, или он учится в 10 классе, или он учится в 11 классе (a ∨_ b ∨_ c).

Импликативное суждение (импликация) – это сложное суждение с условным союзом ЕСЛИ…ТО, который обозначается знаком «=>». С помощью этого знака импликативное суждение, состоящее из двух простых суждений, можно представить в виде формулы: а => в (читается «если а, то b»), где а и b – это два простых суждения. Например, сложное суждение Если вещество является металлом, то оно электропроводно представляет собой импликативное суждение (причинно-следственную связь) двух простых суждений: Вещество является металлом и Вещество электропроводно. В данном случае эти два суждения связаны таким образом, что из первого вытекает второе (если вещество – металл, то оно обязательно электропроводно), однако из второго не вытекает первое (если вещество электропроводно, то это вовсе не означает, что оно является металлом).

Первая часть импликации называется основанием, а вторая – следствием; из основания вытекает следствие, но из следствия не вытекает основание. Формулу импликации: а => b, можно прочитать так: «если а, то обязательно b, но если b, то не обязательно а».

Эквивалентное суждение (эквиваленция) – это сложное суждение с союзом ЕСЛИ…ТО не в его условном значении (как в случае с импликацией), а в тождественном (эквивалентном). В данном случае этот союз обозначается знаком «<=>», с помощью которого эквивалентное суждение, состоящее из двух простых суждений, можно представить в виде формулы: а <=> b (читается «если а, то b, и если b, то а»), где а и b – это два простых суждения. Например, сложное суждение Если число является четным, то оно делится без остатка на 2 представляет собой эквивалентное суждение (равенство, тождество) двух простых суждений: Число является четным и Число делится без остатка на 2. Нетрудно заметить, что в данном случае два суждения связаны так, что из первого вытекает второе, а из второго – первое: если число четное, то оно обязательно делится без остатка на 2, а если число делится без остатка на 2, то оно обязательно четное.

Понятно, что в эквиваленции (в отличие от импликации) не может быть ни основания, ни следствия, так как две ее части являются равнозначными суждениями.

Отрицательное суждение (отрицание) – это сложное суждение с союзом НЕВЕРНО, ЧТО, который обозначается знаком «». С помощью этого знака отрицательное суждение можно представить в виде формулы: а (читается «неверно, что а»), где а – это простое суждение. Здесь может возникнуть вопрос: где же вторая часть сложного суждения, которую мы обычно обозначали символом b? В записи а, уже присутствуют два простых суждения: а – это какое-то утверждение, а знак «» – его отрицание. Перед нами как бы два простых суждения – одно утвердительное, другое отрицательное. Пример отрицательного суждения: Неверно, что все мухи являются птицами.

 

Союзов в естественном языке много, но все они по смыслу сводятся к рассмотренным пяти видам, и любое сложное суждение относится к одному из них. Например, сложное суждение Уж полночь близится, а Германна все нет является конъюнкцией, потому что в нем союз А употребляется в роли соединительного союза И. Сложное суждение Посеешь ветер, пожнешь бурю, в котором вообще нет союза, является импликацией, так как два простых суждения в нем связаны условным союзом ЕСЛИ…ТО.

Приведем еще несколько примеров сложных суждений с различными союзами естественного языка, которые выступают в роли нескольких рассмотренных нами логических союзов.

Живое существо является человеком только тогда, когда оно обладает мышлением (эквиваленция).

Человечество может погибнуть то ли от истощения земных ресурсов, то ли от экологической катастрофы, то ли в результате третьей мировой войны (нестрогая дизъюнкция).

Вчера он получил двойку не только по математике, но еще и по русскому (конъюнкция).

Проводник нагревается, когда через него проходит электрический ток (импликация).

Окружающий нас мир либо познаваем, либо нет (строгая дизъюнкция).

Либо же он совершенно бездарен, либо же полный лентяй (нестрогая дизъюнкция).

Когда человек льстит, он лжет (импликация).

Вода превращается в лед лишь при температуре от нуля градусов по Цельсию и ниже (эквиваленция).

Две прямые, лежащие в одной плоскости, не имеют общих точек только тогда, когда они параллельны (эквиваленция).

Вместо того, чтобы пойти в школу, он пошел гулять (конъюнкция).

Английский язык можно изучать либо в школе, либо на курсах, либо с репетитором, либо самостоятельно (нестрогая дизъюнкция).

То ли в мире действует всеобщая закономерность, то ли всеобщая случайность (строгая дизъюнкция).

Он не готовился к занятиям или систематически прогуливал их (нестрогая дизъюнкция).

Чем дальше в лес, тем больше дров (импликация).

Деревья качаются, потому что дует ветер (импликация).

Хотя на море разыгрался шторм, корабль неуклонно двигался своим курсом (конъюнкция).

Глаза боятся, а руки делают (конъюнкция).

Бели с утра шел дождь, то к полудню прояснилось (конъюнкция).

Кончил дело, гуляй смело (импликация).

Треугольник является равносторонним только тогда, когда все его углы равны (эквиваленция).

 

Любое сложное суждение является истинным или ложным в зависимости от истинности или ложности входящих в него простых суждений. Ниже приведена таблица истинности всех видов сложных суждений в зависимости от всех возможных наборов истинностных значений двух входящих в них простых суждений. Таких наборов всего четыре:

• оба простых суждения истинные;

• первое суждение истинное, а второе ложное;

• первое суждение ложное, а второе истинное;

• оба суждения ложные.

Таблица

Как видим, конъюнкция (аb) истинна только тогда, когда истинны оба простых суждения, входящих в нее. Надо отметить, что конъюнкция, состоящая не из двух, а из большего количества простых суждений, также истинна только в том случае, когда истинны все входящие в нее суждения. Во всех остальных случаях она является ложной.

Нестрогая дизъюнкция (ab), наоборот, истинна во всех случаях за исключением того, когда оба входящих в нее простых суждения ложны. Нестрогая дизъюнкция, состоящая не из двух, а из большего количества простых суждений, также ложна только тогда, когда ложны все входящие в нее простые суждения. Строгая дизъюнкция (а ∨_ b) истинна только тогда, когда одно входящее в нее простое суждение истинно, а другое ложно. Строгая дизъюнкция, состоящая не из двух, а из большего количества простых суждений, истинна только в том случае, если истинно только одно из входящих в нее простых суждений, а все остальные ложны.

Импликация (а => b) ложна только в одном случае, – когда ее основание является истинным, а следствие ложным. Во всех остальных случаях она истинна.

Эквиваленция (а <=> b) истинна тогда, когда два составляющих ее простых суждения истинны или же когда они оба являются ложными. Если одна часть эквиваленции истинна, а другая ложна, то эквиваленция ложна.

Проще всего определяется истинность отрицания: когда утверждение (а) истинно, его отрицание (а) ложно; когда утверждение (а) ложно, его отрицание (а) истинно.

 

Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...