Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

Хождение в школу вечно (Общие правила силлогизма)




 

Правила силлогизма делятся на общие и частные.

Общие правила применимы ко всем простым силлогизмам, независимо от того, по какой фигуре они построены. Частные правила действуют только для каждой фигуры силлогизма и поэтому часто называются правилами фигур. Рассмотрим общие правила силлогизма.

В силлогизме должно быть только три термина. Обратимся к уже упоминавшемуся силлогизму, в котором данное правило нарушено.

 

Движение вечно.

Хождение в школу – это движение.

=> Хождение в школу вечно.

 

Обе посылки этого силлогизма являются истинными суждениями, однако из них вытекает ложный вывод, потому что нарушено рассматриваемое правило. Слово движение употребляется в двух посылках в двух разных значениях: движение как всеобщее мировое изменение и движение как механическое перемещение тела из точки в точку. Получается, что терминов в силлогизме три: движение, хождение в школу, вечность, а смыслов (поскольку один из терминов употребляется в двух разных смыслах) четыре, т. е. лишний смысл как бы подразумевает лишний термин. Иначе говоря, в приведенном примере силлогизма было не три, а четыре (по смыслу) термина. Ошибка, возникающая при нарушении вышеприведенного правила, называется учетверением терминов.

Средний термин должен быть распределен хотя бы в одной из посылок. О распределенности терминов в простых суждениях речь шла в предыдущей главе. Напомним, что проще всего устанавливать распределенность терминов в простых суждениях с помощью круговых схем: надо изобразить кругами Эйлера отношения между терминами суждения, при этом полный круг на схеме будет обозначать распределенный термин (+), а неполный – нераспределенный (—). Рассмотрим пример силлогизма.

 

Все кошки (К) – это живые существа (Ж. с).

Сократ (С) – это тоже живое существо.

=> Сократ – это кошка.

 

Из двух истинных посылок вытекает ложный вывод. Изобразим кругами Эйлера отношения между терминами в посылках силлогизма и установим распределенность этих терминов (рис. 40).

Как видим, средний термин (живые существа) в данном случае не распределен ни в одной из посылок, а по правилу он должен быть распределен хотя бы в одной. Ошибка, возникающая при нарушении рассматриваемого правила, так и называется – нераспределенность среднего термина в каждой посылке.

Термин, который был не распределен в посылке, не может быть распределен в выводе. Обратимся к следующему примеру:

 

Все яблоки (Я) – съедобные предметы (С. п.).

Все груши (Г) – это не яблоки.

=> Все груши – несъедобные предметы.

 

Посылки силлогизма являются истинными суждениями, а вывод – ложным. Как и в предыдущем случае, изобразим кругами Эйлера отношения между терминами в посылках и в выводе силлогизма и установим распределенность этих терминов (рис. 41).

В данном случае предикат вывода, или больший термин силлогизма (съедобные предметы), в первой посылке является нераспределенным (—), а в выводе – распределенным (+), что запрещается рассматриваемым правилом. Ошибка, возникающая при его нарушении, называется расширением большего термина. Вспомним, что термин распределен, когда речь идет обо всех предметах, входящих в него, и нераспределен, когда речь идет о части предметов, входящих в него, именно поэтому ошибка и называется расширением термина.

В силлогизме не должно быть двух отрицательных посылок. Хотя бы одна из посылок силлогизма должна быть положительной (могут быть положительными и обе посылки). Если две посылки в силлогизме отрицательные, то вывод из них или вообще сделать нельзя, или же, если его сделать возможно, он будет ложным или, по крайней мере, недостоверным, вероятностным. Например:

 

Снайперы не могут иметь плохое зрение.

Все мои друзья – не снайперы.

=> Все мои друзья имеют плохое зрение.

 

Обе посылки в силлогизме являются отрицательными суждениями, и, несмотря на их истинность, из них вытекает ложный вывод. Ошибка, которая возникает в данном случае, так и называется – две отрицательные посылки.

Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...