Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

Целочисленное программирование




Задачи оптимизации, в которых переменные принимают целочисленные значения, относятся к целочисленному программированию. Рассмотрим несколько таких задач.

Задача о выборе оборудования. На приобретение оборудования для нового участка цеха выделено 20000 долларов США. При этом можно занять площадь не более 38 м2. Имеется возможность приобрести станки типа А и станки типа Б. При этом станки типа А стоят 5000 долларов США, занимают площадь 8 м2 (включая необходимые технологические проходы) и имеют производительность 7 тыс. единиц продукции за смену. Станки типа Б стоят 2000 долларов США, занимают площадь 4 м2 и имеют производительность 3 тыс. единиц продукции за смену. Необходимо рассчитать оптимальный вариант приобретения оборудования, обеспечивающий при заданных ограничениях максимум общей производительности участка.

Пусть Х - количество станков типа А, а У - количество станков типа Б, входящих в комплект оборудования. Требуется выбрать комплект оборудования так, чтобы максимизировать производительность С участка (в тыс. единиц за смену):

С = 7 Х + 3 У → max.

При этом должны быть выполнены следующие ограничения: по стоимости (в тыс. долларов США)

5 Х + 2 У ≤ 20,

по занимаемой площади (в м2)

8 Х + 4 У ≤ 38,

а также вновь появляющиеся специфические ограничения по целочисленности, а именно,

Х ≥ 0, У ≥ 0, Х и У - целые числа.

Сформулированная математическая задача отличается от задачи линейного программирования только последним условием целочисленности. Однако наличие этого условия позволяет (в данном конкретном случае) легко решить задачу перебором. Действительно, как ограничение по стоимости, так и ограничение по площади дают, что Х ≤ 4. Значит, Х может принимать лишь одно из 5 значений: 0, 1, 2, 3, 4.

Если Х = 4, то из ограничения по стоимости следует, что У = 0, а потому С = 7 Х = 28.

Если Х= 3, то из первого ограничения вытекает, что У ≤ 2, из второго У ≤ 3. Значит, максимальное С при условии выполнения ограничений достигается при У =2, а именно С = 21 + 6 = 27.

Если Х= 2, то из первого ограничения следует, что У ≤ 5, из второго также У ≤ 5. Значит, максимальное С при условии выполнения ограничений достигается при У =5, а именно С = 14 + 15 = 29.

Если Х= 1, то из первого ограничения имеем У ≤ 7, из второго также У ≤ 7. Значит, максимальное С при условии выполнения ограничений достигается при У = 7, а именно С = 7 + 21 = 28.

Если Х= 0, то из первого ограничения вытекает У ≤ 10, из второго У ≤ 9. Значит, максимальное С при условии выполнения органичений достигается при У = 9, а именно С = 27.

Все возможные случаи рассмотрены. Максимальная производительность С = 29 (тысяч единиц продукции за смену) достигается при Х = 2, У = 5. Следовательно, надо покупать 2 станка типа А и 5 станков типа Б.

Задача о ранце. Общий вес ранца заранее ограничен. Какие предметы положить в ранец, чтобы общая полезность отобранных предметов была максимальна? Вес каждого предмета известен.

Есть много эквивалентных формулировок. Например, можно вместо ранца рассматривать спутник, а в качестве предметов - научные приборы. Тогда задача интерпретируется как отбор приборов для запуска на орбиту. Правда, при этом предполагается решенной предварительная задача - оценка сравнительной ценности исследований, для которых нужны те или иные приборы.

Перейдем к математической постановке. Предполагается, что имеется n предметов, и для каждого из них необходимо решить, класть его в ранец или не класть. Для описания решения вводятся булевы переменные Хk, k = 1,2,…,n (т.е. переменные, принимающие два значения, а именно, 0 и 1). При этом Хk = 1, если предмет размещают в ранце, и Хk = 0, если нет, k = 1,2,…,n. Для каждого предмета известны две константы: Аk - вес k-го предмета и Сk - полезность k-го предмета, k = 1,2,…,n. Максимально возможную вместимость ранца обозначим В. Оптимизационная задача имеет вид

C1 Х1 + С2 Х2 + С3 Х3 + …. + СnХn → max,

А1 Х1 + А2 Х2 + А3 Х3 + …. + АnХn ≤ В.

В отличие от предыдущих задач, управляющие параметры Хk, k = 1,2,…,n, принимают значения из множества, содержащего два элемента - 0 и 1.

К целочисленному программированию относятся задачи размещения (производственных объектов), теории расписаний, календарного и оперативного планирования, назначения персонала и т.д. (см., например, монографию [3]).

Экспертные оценки, бинарные отношения

И дискретная оптимизация

Методы средних баллов. Целочисленное программирование успешно применяется и для усреднения ответов экспертов. В теории принятия решений большое место занимают экспертные опросы. Сначала рассмотрим балльные оценки. Часто опрашиваемых просят выставить баллы объектам, изделиям, технологическим процессам, предприятиям, проектам, заявкам на выполнение научно-исследовательских работ, идеям, проблемам, программам, политикам и т.п., а затем рассчитывают средние баллы и рассматривают их как интегральные оценки, выставленные коллективом опрошенных. Какими формулами пользоваться для вычисления средних величин? Ведь видов средних величин очень много. По традиции обычно применяют среднее арифметическое. Мы уже более 25 лет знаем, что такой способ некорректен, поскольку баллы обычно измерены в т.н. порядковой шкале. Как доказано в монографии [6], обоснованным является использование медиан в качестве средних баллов. Однако полностью игнорировать средние арифметические нерационально из-за их привычности и распространенности. Поэтому целесообразно использовать одновременно оба метода - и метод средних арифметических рангов (баллов), и методов медианных рангов. Такая рекомендация находится в согласии с концепцией устойчивости, рекомендующей использовать различные методы для обработки одних и тех же данных с целью выделить выводы, получаемые одновременно при всех методах [6]. Такие выводы, видимо, соответствуют реальной действительности, в то время как заключения, меняющиеся от метода к методу, зависят от субъективизма исследователя, выбирающего метод обработки исходных экспертных оценок.

Пример сравнения восьми проектов. Рассмотрим конкретный пример применения только что сформулированного подхода. По заданию руководства фирмы анализировались восемь проектов, предлагаемых для включения в план стратегического развития фирмы. Они были обозначены следующим образом: Д, Л, М-К, Б, Г-Б, Сол, Стеф, К (по фамилиям менеджеров, предложивших их для рассмотрения). Все проекты были направлены 12 экспертам, назначенным Правлением фирмы. В приведенной ниже табл.6 приведены ранги восьми проектов, присвоенные им каждым из 12 экспертов в соответствии с их представлением о целесообразности включения проекта в стратегический план фирмы (ранг 1 - самый лучший проект, который обязательно надо реализовать, ранг 2 - второй по привлекательности проект,..., ранг 8 - наиболее сомнительный проект).

Анализируя результаты работы экспертов (т.е. упомянутую табл.8), члены Правления фирмы были вынуждены констатировать, что полного согласия между экспертами нет, а потому данные табл.6 следует подвергнуть более тщательному математическому анализу.

Метод средних арифметических рангов. Сначала был применен метод средних арифметических рангов. Для этого прежде всего была подсчитана сумма рангов, присвоенных проектам (см. таблицу). Затем эта сумма была разделена на число экспертов, в результате рассчитан средний арифметический ранг (именно эта операция дала название методу). По средним рангам строится итоговая ранжировка (в другой терминологии - упорядочение), исходя из принципа - чем меньше средний ранг, чем лучше проект. Наименьший средний ранг, равный 2,625, у проекта Б, - следовательно, в итоговой ранжировке он получает ранг 1. Следующая по величине сумма, равная 3,125, у проекта М-К, - и он получает итоговый ранг 2. Проекты Л и Сол имеют одинаковые суммы (равные 3,25), значит, с точки зрения экспертов они равноценны (при рассматриваемом способе сведения вместе мнений экспертов), а потому они должны бы стоять на 3 и 4 местах и получают средний балл (3+4)/2 = 3,5. Дальнейшие результаты приведены в табл.7 ниже.

 

Табл.6. Ранги 8 проектов по степени привлекательности

для включения в план стратегического развития фирмы

№ эксперта Д Л М-К Б Г-Б Сол Стеф К
                 
                 
                 
      2,5 2,5        
                 
                 
                 
                 
                 
                 
                 
                 

Примечание. Эксперт № 4 считает, что проекты М-К и Б равноценны, но уступают лишь одному проекту - проекту Сол. Поэтому проекты М-К и Б должны были бы стоять на втором и третьем местах и получить баллы 2 и 3. Поскольку они равноценны, то получают средний балл (2+3)/ 2 = 5/ 2 = 2,5.

 

Итак, ранжировка по суммам рангов (или, что то же, по средним арифметическим рангам) имеет вид:

Б < М-К < {Л, Сол} < Д < Стеф < Г-Б < К. (1)

Здесь запись типа "А<Б" означает, что проект А предшествует проекту Б (т.е. проект А лучше проекта Б). Поскольку модели Л и Сол получили одинаковую сумму баллов, то по рассматриваемому методу они эквивалентны, а потому объединены в группу (в фигурных скобках). В терминологии математической статистики ранжировка (1) имеет одну связь.

Метод медиан рангов. Значит, наука сказала свое слово, итог расчетов - ранжировка (1), и на ее основе предстоит принимать решение? Но тут наиболее знакомый с современной эконометрикой член Правления вспомнил, что ответы экспертов измерены в порядковой шкале, а потому для них неправомерно проводить усреднение методом средних арифметических. Надо использовать метод медиан.

Что это значит? Надо взять ответы экспертов, соответствующие одному из проектов, например, проекту Д. Это ранги 5, 5, 1, 6, 8, 5, 6, 5, 6, 5, 7, 1. Затем их надо расположить в порядке неубывания (проще было бы сказать - "в порядке возрастания", но поскольку некоторые ответы совпадают, то приходится использовать непривычный термин "неубывание"). Получим последовательность: 1, 1, 5, 5, 5, 5, 5, 6, 6, 6, 7, 8. На центральных местах - шестом и седьмом - стоят 5 и 5. Следовательно, медиана равна 5.

 

Табл. 7. Результаты расчетов по методу средних арифметических

и методу медиан для данных, приведенных в табл.6.

  Д Л М-К Б Г-Б Сол Стеф К
Сумма рангов     37,5 31.5        
Среднее арифметическое рангов   3,25 3,125 2,625 6,333 3,25 5,333 7,083
Итоговый ранг по среднему арифметическому   3,5       3,5    
Медианы рангов       2,25 7,5      
Итоговый ранг по медианам   2,5 2,5          

 

Медианы совокупностей из 12 рангов, соответствующих определенным проектам, приведены в предпоследней строке таблицы. (При этом медианы вычислены по обычным правилам статистики - как среднее арифметическое центральных членов вариационного ряда.) Итоговое упорядочение по методу медиан приведено в последней строке таблицы. Ранжировка (т.е. упорядочение - итоговое мнение комиссии экспертов) по медианам имеет вид:

Б < {М-К, Л} < Сол < Д < Стеф < К <Г-Б. (2)

Поскольку проекты Л и М-К имеют одинаковые медианы баллов, то по рассматриваемому методу ранжирования они эквивалентны, а потому объединены в группу (кластер), т.е. с точки зрения математической статистики ранжировка (2) имеет одну связь.

Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...