Соединенный метод сходства и различия
⇐ ПредыдущаяСтр 3 из 3 Этот метод представляет собой комбинацию первых двух методов, когда путем анализа множества случаев обнаруживают как сходное в различном, так и различное в сходном. В качестве примера остановимся на приведенном выше рассуждении по методу сходства о причинах заболевания трех пациентов. Если дополнить это рассуждение анализом новых трех случаев, в которых повторяются те же обстоятельства, кроме сходного, т.е. в пищу употреблялись одинаковые продукты, кроме молока, и при этом не наблюдалось заболевания, то тем самым вывод будет протекать в форме соединенного метода. Схема рассуждения имеет при этом следующий вид:
Вероятность заключения в таком усложненном рассуждении заметно возрастает, ибо соединяются преимущества метода сходства и метода различия, каждый из которых в отдельности дает менее надежные результаты.
Метод сопутствующих изменений Метод применяется при анализе случаев, в которых имеет место видоизменение одного из предшествующих обстоятельств, сопровождаемое видоизменением исследуемого действия. Предыдущие индуктивные методы основывались на повторяемости либо отсутствии определенного обстоятельства. Однако не все причинно связанные явления допускают нейтрализацию или замену отдельных составляющих их факторов. Например, исследуя влияние трения на скорость движения тела, невозможно в принципе исключить само трение. Точно так же, определяя влияние Луны на величину морских приливов, невозможно изменить массу Луны. Единственным способом обнаружения причинных связей в таких условиях является фиксация в процессе наблюдения сопутствующих изменений в предшествующих и последующих явлениях. Причиной в этом случае выступает такое предшествующее обстоятельство, интенсивность или степень изменения которого совпадает с изменением исследуемого действия. Если обозначить символами А, В, С предшествующие обстоятельства, каждое из которых не может быть опущено или заменено; индексами 1, 2,.... n — степень изменения этих обстоятельств; символом d — интересующее нас действие, то рассуждение по методу сопутствующих изменений принимает следующий вид:
Именно таким путем строится вывод о влиянии солнечных пятен на появление магнитных бурь на Земле. Наблюдения показали на простое совпадение магнитных бурь с 11-летним циклом появления пятен на Солнце, но также и на то, что увеличение пятен сопровождается возрастанием магнитных возмущений. Применение метода сопутствующих изменений также предполагает соблюдение ряда условий. (1) Необходимо знание о всех возможных причинах исследуемого явления. Такими обстоятельствами выступают А, В и С: A v B v C (2) Из приведенных обстоятельств должны быть элиминированы те, которые не удовлетворяют свойству однозначности причинной связи. Так, во всех трех случаях А и В не могут быть причиной d, ибо с изменением d и первое, и второе остаются неизменными. А и В элиминируются, ибо неизменное не может быть причиной изменяющегося, что косвенно указывает на С как на единственную среди возможных причин. (3) Среди предшествующих выделяют единственное обстоятельство, изменение которого сопутствует изменению действия. В приведенной схеме такую роль выполняет С, изменение интенсивности которого от С1 до Сn сопровождается изменением интенсивности d — от d1 до dn Сопутствующие изменения могут быть прямыми и обратными. Прямая зависимость означает: чем интенсивнее проявление предшествующего фактора, тем активнее проявляет себя и исследуемое явление; с падением интенсивности соответственно снижается и активность или степень проявления действия. Например, с повышением температуры воздуха происходит расширение ртути и ее уровень в градуснике поднимается; с понижением температуры ртутный столбик соответственно падает. Точно так же с усилением или ослаблением солнечной активности соответственно увеличивается или падает уровень радиации в земных условиях.
Обратная зависимость выражается в том, что интенсивное проявление предшествующего обстоятельства замедляет активность или уменьшает степень изменения исследуемого явления. Например, чем больше трение, тем меньше скорость движения тела, или чем выше производительность труда, тем ниже себестоимость продукции. Логический механизм индуктивного обобщения по методу сопутствующих изменений принимает форму дедуктивного рассуждения по модусу tollendo ponens разделительно-категорического умозаключения. Схема рассуждения имеет следующий вид:
Обоснованность заключения в выводе по методу сопутствующих изменений определяется числом рассмотренных случаев, точностью знания о предшествующих обстоятельствах, а также адекватностью изменений предшествующего обстоятельства и исследуемого явления. С увеличением числа сравниваемых случаев, демонстрирующих сопутствующие изменения, растет вероятность заключения. Если множество альтернативных обстоятельств не исчерпывает всех возможных причин и не является закрытым, то заключение в выводе проблематично, а не достоверно Обоснованность вывода во многом зависит также от степени соответствия изменений в предшествующем факторе и самом действии. Во внимание принимаются не любые, а лишь пропорционально нарастающие либо убывающие изменения. Те из них, которые не отличаются взаимооднозначной регулярностью, нередко возникают под воздействием неконтролируемых, случайных факторов и могут вводить в заблуждение исследователя. Рассуждения по методу сопутствующих изменений применяются при выявлении не только причинных, но и других, например функциональных связей, когда устанавливают зависимость между количественными характеристиками двух явлений. В этом случае важное значение приобретает учет характерной для каждого рода явлений шкалы интенсивности изменений, в рамках которой количественные изменения не меняют качества явления. В любом случае количественные изменения имеют нижнюю и верхнюю границы, которые называются пределами интенсивности. В этих пограничных зонах меняется качественная характеристика явления и тем самым могут обнаруживаться отклонения при применении метода сопутствующих изменений.
Например, уменьшение объема некоторых веществ при их охлаждении прекращается в определенной точке (для воды, например, это точка замерзания), а затем их объем при дальнейшем охлаждении увеличивается. Другой пример: медицине хорошо известны лечебные свойства препаратов, содержащих в малых дозах яды. С увеличением дозы полезность препарата растет лишь до определенного предела. За пределами шкалы интенсивности препарат действует в обратном направлении и становится опасным для здоровья. Любой процесс количественных изменений имеет свои критические точки, которые следует учитывать при применении метода сопутствующих изменений, эффективно действующего лишь в рамках шкалы интенсивности. Использование метода без учета пограничных зон количественных изменений может приводить к логически некорректным результатам.
Метод остатков
Применение метода связано с установлением причины, вызывающей определенную часть сложного действия, при условии, что причины, вызывающие другие части этого действия, уже выявлены. Схема рассуждения по методу остатков имеет следующий вид:
Методом остатков был сделан вывод о существовании некоторых химических элементов — гелия, рубидия и др. Предположение основывалось на результатах, полученных в процессе спектрального анализа: были обнаружены новые линии, которые не принадлежали ни одному из уже известных химических элементов. В практике научных и обычных рассуждений часто встречается модифицированный вывод по методу остатков, когда по известному действию заключают о существовании новой по отношению к уже известной причине. Например, Мария Склодовская-Кюри, установив, что некоторые урановые руды испускают радиоактивные лучи, превышающие по интенсивности излучение урана, пришла к выводу, что в этих соединениях имеются какие-то новые вещества. Так были открыты новые радиоактивные элементы: полоний и радий.
Схема модифицированного рассуждения по методу остатков имеет следующий вид:
Подобно другим индуктивным выводам метод остатков дает, как правило, проблематичное знание. Степень вероятности заключения в таком выводе определяется, во-первых, точностью знания о предшествующих обстоятельствах, среди которых идет поиск причины исследуемого явления, во-вторых, точностью знания о степени влияния каждой из известных причин на совокупный результат. Приблизительный и неточный перечень предшествующих обстоятельств, как и неточное представление о влиянии каждой из известных причин на совокупное действие, может привести к тому, что в заключении вывода в качестве неизвестной причины будет представлено не необходимое, а лишь сопутствующее обстоятельство. Рассуждения по методу остатков нередко используются в процессе расследования преступлений, главным образом в тех случаях, когда устанавливают явную несоразмерность причин исследуемым действиям. Если действие по своему объему, масштабу или интенсивности не соответствует известной причине, то ставится вопрос о существовании каких-то других обстоятельств. Например, по уголовному делу о хищении товаров со склада обвиняемый признал факт хищения и показал, что он в одиночку вынес со склада похищенную вещь. Проведенной проверкой было установлено, что вынести такую тяжелую вещь не под силу одному человеку. Следователь пришел к выводу об участии в хищении других лиц, в связи с чем менялась и квалификация деяния. Рассмотренные методы установления причинных связей по своей логической структуре относятся к сложным рассуждениям, в которых собственно индуктивные обобщения строятся с участием дедуктивных выводов. Опираясь на свойства причинной связи, дедукция выступает логическим средством элиминации (исключения) случайных обстоятельств, тем самым она логически корректирует и направляет индуктивное обобщение. Взаимосвязь индукции и дедукции обеспечивает логическую состоятельность рассуждений при применении методов, а точность выраженного в посылках знания определяет степень обоснованности получаемых заключений.
Статистические обобщения
Особым видом умозаключений неполной индукции являются статистические обобщения, связанные с анализом массовых событий. К ним относятся, например, массовые транспортные перевозки пассажиров и грузов, рождаемость и смертность людей, распространение заболеваний, транспортные происшествия, динамика преступлений и многие другие. Учитывая трудности выявления причинных зависимостей, анализ таких массовых событий позволяет установить устойчивое распределение интересующих исследователя случайных признаков. Количественная информация, выражающая устойчивые тенденции развития, имеет важное практическое значение для правильной организации обслуживания населения, профилактических мероприятий, борьбы с преступностью и т.п. Анализ массовых событий ведется чаще всего путем не сплошного, а выборочного исследования отдельных групп или образцов и логического переноса полученных результатов на все их множество. Вывод в этом случае протекает в форме статистического обобщения. Статистическое обобщение — это умозаключение неполной индукции, в котором установленная в посылках количественная информация о частоте определенного признака в исследуемой группе (образце) переносится в заключении на все множество явлений этого рода. В отличие от индукции через перечисление при отсутствии противоречащего случая в посылках статистического умозаключения фиксируется следующая информация (1) общее число составляющих исследуемую группу, или образец, случаев; (2) число случаев, в которых присутствует интересующий исследователя признак; (3) частота появления интересующего признака. Для построения схемы статистического обобщения введем следующие условные обозначения: S — исследуемый образец; р — интересующий исследователя признак; m — общее число наблюдаемых случаев (элементов образца); n — число случаев, когда явление обладает признаком р, f(p) — частота признака р; К — популяция, или множество явлений, на которые распространяется частота признака. Частота появления признака р в образце S представляет собой отношение числа случаев обладания признаком n к общему числу исследованных явлений m: f(p) = n/m Так, например, статистическая информация о совершении такого рода преступлений, как хулиганство, показывает, что 95 из 100 случаев хулиганских действий совершаются в состоянии алкогольного опьянения. Значит, частота хулиганства, сопровождаемая алкогольным опьянением, определяется как 95/100, т. е. равна 95%. В общем виде частота появления признака в статистических описаниях принимает числовое значение в интервале между 0 и 1: 0 < f(p) < 1. Это объясняется тем, что в статистическом образце S число случаев появления признака (n) всегда меньше общего числа наблюдаемых элементов (m). Поскольку m>n, тем самым f(p) всегда будет меньше единицы, но больше нуля. В том случае, когда f(p) = 0, это значит, что среди наблюдаемых не обнаружено ни одного явления, обладающего этим признаком. На этой основе может быть построено обычное индуктивное обобщение с отрицательным заключением: поскольку ни одно S не обладает свойством р, значит, можно заключить, что весь класс К не обладает этим свойством. Точно так же и в случае f(p) = 1 можно построить обычную индуктивную генерализацию с утвердительным заключением. Поскольку число случаев появления признака (n) равно числу всех исследованных (m), т.е. n = m, значит, каждое S обладает р. Отсюда заключают, что весь класс К обладает этим признаком. Схема статистического обобщения имеет следующий вид:
Это означает: признак р появляется в образце S с частотой f; образец S является подмножеством популяции К, которая по числу элементов больше S; отсюда следует, что признак р будет встречаться в популяции К с частотой f. Статистическое обобщение, будучи выводом неполной индукции, относится к недемонстративным умозаключениям. Логический переход от посылок к заключению дает здесь лишь проблематичное знание. Степень обоснованности статистического обобщения зависит от специфики исследованного образца: его величины по отношению к популяции и представительности (репрезентативности). Если образец по объему приближается к популяции, тем основательнее обобщение, поскольку возможность ошибки становится минимальной. Репрезентативность образца означает меру его представительности: насколько разнообразие элементов в образце отражает их разнообразие в популяции. Тщательность статистического описания исследуемого образца и логически корректный перенос частоты признака на популяцию обеспечивают высокую вероятность и тем самым практическую эффективность статистических обобщений в различных областях науки, культуры, производства, правовой деятельности.
Контрольные вопросы 1. Как определить индукцию? 2. Чем неполная индукция отличается от полной? 3. Каковы условия повышения степени вероятности заключений в перечислительной индукции? 4. Каковы свойства причинной связи? 5. В чем специфика рассуждений по методу сходства? 6. Как элиминируются обстоятельства при пользовании методом различия? 7. Какова схема и принципы рассуждения по методу сопутствующих изменений? 8. Какова структура статистических обобщений и чем они отличаются от перечислительной индукции?
Воспользуйтесь поиском по сайту: ©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...
|