Шлифование и полирование покрытий
На практике часто встречаются случаи, когда отдельные участки покрытия отличаются по внешнему виду, так как имеют волнистости, наплывы, меньший глянец и др. В этом случае применяют шлифование и полирование поверхности. От того, насколько тщательно выполнена операция шлифования, во многом зависит качество окрашивания. Правильно зашлифованная поверхность должна быть совершенно гладкой, без крупных рисок. Для облегчения шлифования лучше сначала использовать шлифовальные шкурки крупной зернистости, а затем для заглаживания рисок — шкурки мелкой зернистости. Шлифовальные шкурки выпускаются самых разных марок. Для чего предназначена шлифовальная шкурка, какую имеет зернистость и можно ли использовать ее для шлифования со смазочно-охлаждающими жидкостями (в том числе с водой для так называемого мокрого шлифования), определяют по маркировке на ее рабочей стороне.
Защита от коррозии двигателя и системы выпуска газов Система выпуска газов современных автомобилей работает в тяжелых условиях. Изнутри ее разрушают горячие отработавшие газы, пары кислот, конденсат влаги, а снаружи — вода, грязь, соль, камни. Кроме того, тенденция к уменьшению высоты современного автомобиля приводит к тому, что его выпускная система приближается к дорожному полотну, вследствие чего глушитель и трубы корродируют быстрее. Можно выделить пять основных видов коррозии: общая внутренняя; общая внешняя; местная в местах сварки, щелях, зазорах; под влиянием механических нагрузок и деформации; под влиянием высоких температур. Общая внутренняя коррозия системы выпуска газов развивается вследствие образования при сгорании топлива воды, оксидов углерода, азота и серы. Кроме того, этилированные топлива содержат рафинирующие добавки в виде хлоридов и бромидов, которые являются источниками образования соляной и бромистоводородной кислот.
Коррозия внутренних поверхностей глушителя ускоряется также от действия нагара, образующегося во время работы двигателя. Эффективным способом защиты от коррозии наружных поверхностей системы выпуска газов является их окрашивание. Однако при этом надо учитывать, что температура отработавших газов, измеренная у выпускного трубопровода, обычно находится в пределах 420...760°С, а металл выхлопной трубы нагревается соответственно до 240... 540°С, т. е. для их окрашивания пригодны только термостойкие, в основном кремнийорганические эмали и лаки. Термостойкость лаков значительно повышается при добавлении к ним 6... 10 % алюминиевой пудры. Причем смешивать пудру с лаком нужно непосредственно перед употреблением, так как при длительном хранении (более 4...6 ч) пудра теряет способность всплывать. В результате ухудшаются эксплуатационные показатели и внешний вид покрытия. Специально для окрашивания деталей системы выпуска отработавших газов автомобиля предназначены эмали КО-828 и КО-813 цвета алюминия. В качестве растворителя для них используют сольвент или РКБ-1. Двигатель автомобиля окрашивают нитроглифталевой эмалью с алюминиевой пудрой или эмалью МС-17 светло-серого цвета. Перед употреблением в эмаль МС-17 добавляют 2 % сиккатива № 63 или № 64. В процессе эксплуатации двигатель может нагреваться до 80°С. При этом масла, пыль, сажа и другие загрязнения скапливаются и создают довольно толстую пленку, которая, являясь хорошим теплоизолятором, затрудняет охлаждение двигателя. Используя «Автоочиститель двигателя», можно быстро и качественно очистить его поверхность. В состав очистителя входят растворители, поверхностно-активные вещества, ингибиторы коррозии и др.
Защита от коррозии днища, шасси и скрытых полостей автомобиля В настоящее время лучшими защитными материалами для днища и крыльев автомобиля считаются поливинилхлоридные пластизоли. Срок их действия от 3 до 7 лет. На автозаводах из материалов этого класса обычно используют пластизоль Д-11А. Покрытия из него обеспечивают также уменьшение шумов при движении автомобиля. Пластизоль наносят методом безвоздушного распыления и высушивают при 130 °С в течение 30 мин. К этому же классу относятся битумные и каучуковые покрытия. Битумные покрытия защищают металл 1... 2 года. Они хорошо противостоят действию соли, воды и влаги, но недостаточно стойкие к ударам камней, щебня и морозу. В настоящее время из отечественных противокоррозионных покрытий выпускаются «Автоантикор-2 битумный для днища», мастика сланцевая автомобильная МСА-3, автоантикор для днища резинобитумный, мовиль, «Мольвин-МЛ», «Резистин» и др. Все составы обладают хорошей смачивающей способностью, легко проникают в дефекты сварочных швов, трещины, узкие зазоры между листами металла, а также в рыхлую ржавчину, пропитывая ее и замедляя процесс коррозии там, где он уже начался.
Контрольные вопросы 1. Для чего служит окрашивание автомобилей? 2. Какие виды лакокрасочных материалов применяются для ремонтного окрашивания автомобилей? 3. Что такое фосфатирование? 4. Для чего выполняют грунтование и шпатлевание? 5. Как наносят эмаль?
ГЛАВА 13
ПЛАСТИЧЕСКИЕ МАССЫ, КЛЕИ, ОБИВОЧНЫЕ, УПЛОТНИТЕЛЬНЫЕ И ИЗОЛЯЦИОННЫЕ МАТЕРИАЛЫ
Полимерные материалы Использование полимерных материалов позволяет значительно снизить трудоемкость ремонта автомобиля, так как при этом не требуется сложного оборудования и высокой квалификации рабочих, а также появляется возможность производить ремонт без разборки узлов и агрегатов. Во многих случаях использование полимерных материалов позволяет не только заменить сварку или наплавку, но и производить ремонт таких деталей, которые другими известными способами отремонтировать невозможно или опасно. Наиболее широко при ремонте автомобилей используют анаэробные полимеры и композиционные материалы.
Анаэробные полимерные составы представляют собой жидкие смеси различной вязкости, способные длительное время оставаться в исходном состоянии без изменения свойств и быстро отвердевать с образованием прочного слоя в узких зазорах при температурах 15... 35 "С при условии прекращения контакта с кислородом воздуха. Основой анаэробных составов являются способные к полимеризации соединения акрилового ряда, чаще всего диметакриловые эфиры полиалкиленгликолей. Также в них входят ингибирующие и инициирующие системы, обеспечивающие длительное хранение и быстрое отверждение в зазорах, загустители, модификаторы, красители и другие добавки. Различают анаэробные полимерные материалы высоко-, средне- и низкопрочные. Высокая термическая и химическая стойкость этих материалов после отверждения позволяет обеспечивать работоспособность отремонтированных узлов и деталей при эксплуатации их в контакте с органическими растворителями и агрессивными средами в широком интервале температур и давлений. На скорость отверждения анаэробных полимеров влияют материалы, контактирующие с ними. По этому признаку материалы подразделяются на три группы: активные — ускоряющие отверждение (сплавы меди, никель, малоуглеродистые стали); нормальные — не влияющие на скорость отверждения (железо, углеродистые стали, цинк); пассивные — замедляющие отверждение (высокоуглеродистые стали, золото, титан и его сплавы, материалы с антикоррозионными покрытиями, пластмассовые изделия). Композиционные полимерные материалы обычно классифицируются по виду армированного наполнителя или связующего. Связующие делятся на термопласты (способные размягчаться и затвердевать при изменении температуры) и реактопласты, или термореактивные смолы (в которых при нагревании происходят структурные и химические превращения). Эпоксидные смолы являются одним из лучших видов связующих для многих композиционных материалов, так как обладают хорошей адгезией к большинству наполнителей, армирующих компонентов и подложке.
Разнообразие доступных эпоксидных смол и отверждающих агентов позволяет получить после отверждения материалы с широким сочетанием свойств. К преимуществам композиционных полимерных материалов относятся: высокие жесткость, прочность, теплостойкость; стабильность размеров; низкие газо- и паропроницаемость; регулируемые электрические и фрикционные свойства; невысокая стоимость. Полимерные композиционные материалы во многих случаях заменяют пайку, сварку и наплавку, а также обеспечивают восстановление таких деталей, ремонт которых известными способами затруднен или невозможен, поэтому их называют «холодной сваркой». Ценные физико-механические свойства эпоксидных смол проявляются в результате превращения их под действием отвердителей в сетчатый полимер. Эпоксидные композиции обладают уникальным набором технологических свойств, а полимерные материалы на их основе отличаются таким сочетанием прочностных, теплофизических, диэлектрических, адгезионных, влагозащитных и других показателей, какого не имеет ни одна другая группа высокомолекулярных соединений. Основное достоинство технологий ремонта с использованием эпоксидных олигомерных композиций заключается в возможности их отверждения при любых температурах. Свойства отвержденной эпоксидной композиции во многом определяются характеристиками эпоксидной смолы, условиями и режимами протекания процесса их отверждения. Существующие отвердители можно разбить на четыре группы: аминные отвердители; ангидриды дикарбоновых и поликарбоновых кислот; олигомерные отвердители; катализаторы и ускорители отверждения эпоксидных смол. Однако для практического использования пригодны лишь немногие соединения, так как использование композиционных материалов при ремонте автомобилей требует отверждения эпоксидных композиций при комнатной температуре или при умеренном нагревании, а в случае необходимости и при отрицательных температурах. Отвержденные эпоксидные смолы в чистом виде обладают повышенной хрупкостью, т. е. плохо выдерживают удары и вибрации. Для повышения эластичности в их состав вводят пластификаторы. Пластификация определяет изменение вязкости полимерной композиции, увеличение гибкости молекул и подвижности надмолекулярных структур. Пластификаторы не только уменьшают хрупкость, но и повышают морозостойкость и стойкость к резкому изменению температур отвержденных композиций. Пластификаторы можно вводить вручную, однако в этом случае возможно неравномерное смешивание состава с образованием большого количества пузырьков воздуха. Поэтому целесообразно использовать готовые компаунды, в которые уже введены пластификаторы.
В эпоксидный компаунд входит олигоэфиракрилат МГФ-9, представляющий собой эфир, полученный на основе метакриловой и фталевой кислот и триэтиленгликоля. В качестве пластификаторов эпоксидных смол также используют низкомолекулярные полиамидные смолы (Л-18, Л-19, Л-20), являющиеся одновременно отвердителями. В производственной практике ремонта автомобилей наибольшее распространение получили многочисленные композиции на основе эпоксидных смол ЭД-20 и ЭД-16 (табл. 13.1), в которых в качестве пластификатора используется дибутилфталат с отвердителем полиэтиленполиамином. Из отечественных сертифицированных композиционных материалов, изготавливаемых согласно ТУ 06-05-205278121-003—94, в розничной продаже имеется компаунд «Десан». Это универсальный компаунд, представляющий собой двухкомпонентный состав, при смешивании основы и отвердителя которого происходит молекулярная реакция, позволяющая использовать поверхностную активность различных материалов и обеспечивающая адгезию компаунда с металлами, деревом, керамикой, резиной, стеклом. Таблица 13.1
Воспользуйтесь поиском по сайту: ©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...
|