Тождественные преобразования выражений.
⇐ ПредыдущаяСтр 3 из 3 Раскрытие скобок выражения eq осуществляется командой expand(eq). Пример: > eq:=(x+1)*(x-1)*(x^2-x+1)*(x^2+x+1); > expand(eq); Разложение многочлена на множители осуществляется командой factor(eq). Пример: > p:=x^5-x^4-7*x^3+x^2+6*x; > factor(p); Команда expand может иметь дополнительный параметр, позволяющий при раскрытии скобок оставлять определенное выражение без изменений. Например, пусть требуется каждое слагаемое выражения умножить на выражение (x+a). Тогда в командной строке следует написать: > expand((x+a)*(ln(x)+exp(x)-y^2), (x+a)); Дробь можно привести к нормальному виду с помощью команды normal(eq). Например: > f:=(a^4-b^4)/((a^2+b^2)*a*b); > normal(f); Упрощение выражений осуществляется командой simplify(eq). Пример: > eq:=(cos(x)-sin(x))*(cos(x)+sin(x)): > simplify(eq); Приведение подобных членов в выражении осуществляется командой collect(exp,var), где exp – выражение, var – имя переменной, относительно которой следует собирать подобные. В команде simplify в качестве параметров можно указать, какие выражения преобразовывать. Например, при указании simplify(eq,trig) будет производиться упрощение при использовании большого числа тригонометрических соотношений. Стандартные параметры имеют названия: power – для степенных преобразований; radical или sqrt – для преобразования корней; exp – преобразование экспонент; ln – преобразование логарифмов. Использование параметров намного увеличивает эффективность команды simplify. Объединить показатели степенных функций или понизить степень тригонометрических функций можно при помощи команды combine(eq,param), где eq – выражение, param – параметры, указывающие, какой тип функций преобразовать, например, trig – для тригонометрических, power – для степенных. Пример: > combine(4*sin(x)^3, trig);
Для упрощения выражений, содержащих не только квадратные корни, но и корни других степеней, лучше использовать команду radnormal(eq). Пример: > sqrt(3+sqrt(3)+(10+6*sqrt(3))^(1/3))= radnormal(sqrt(3+sqrt(3)+(10+6*sqrt(3))^(1/3))); С помощью команды convert(exp, param), где exp – выражение, которое будет преобразовано в указанный тип param. В частности, можно преобразовать выражение, содержащее sin x и cos x, в выражение, содержащее только tg x, если указать в качестве параметра tan, или, наоборот, tg x, ctg x можно перевести в sin x и сos x, если в параметрах указать sincos. Вообще, команда convert имеет более широкое назначение. Она осуществляет преобразование выражения одного типа в другой. Например: convert(list, vector) – преобразование некоторого списка list в вектор с теми же элементами; convert(expr, string) – преобразование математического выражения в его текстовую запись. Для вызова подробной информации о назначении параметров команды convert следует обратиться к справочной системе, набрав convert[termin]. Если вы забыли параметры какой-либо команды, то можно воспользоваться справочной системой Maple. Для вызова справки по конкретной команде, следует выделить набранное имя этой команды и нажать клавишу F1. Если команда набрана правильно, то появится описание этой команды (в большинстве версий Maple помощь на английском языке).
Задание 4.
1. Перейдите в текстовый режим и наберите «Задание №4». После не забудьте перейти в режим командной строки. Перед выполнением каждого пункта этого задания обязательно набирайте команду обновления restart; 2. Разложить полином на множители . Для этого наберите в командной строке: > factor(x^3+4*x^2+2*x-4); После нажатия клавиши Enter должно получиться . 3. Упростить выражение . Наберите: > eq:=(1+sin(2*x)+cos(2*x))/(1+sin(2*x)-cos(2*x)): > convert(eq, tan): > eq=normal(%); . 4. Упростить выражение . Для этого наберите: > eq:=3*(sin(x)^4+cos(x)^4)-2*(sin(x)^6+cos(x)^6): > eq=combine(eq, trig);
5. Выполните все контрольные задания. Перед их выполнением не забудьте набрать в текстовом режиме «Контрольные задания». Результаты выполнения заданий покажите преподавателю.
6. Сохраните файл со всеми выполненными заданиями на диск. 7. Ответьте на все контрольные вопросы.
Читайте также: CТО. Преобразования Лоренса для координат ивремени. Воспользуйтесь поиском по сайту: ©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...
|