Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

Энергетические зоны в кристаллах




В § 51 мы установили, что в приближении свободных электронов энергия валентных электронов в кристалле изменяется квазинепрерывно. Это означает, что спектр разрешенных значений энергии состоит из множества близкорасположенных дискретных уровней. В действительности валентные электроны в кристалле движутся не вполне свободно — на них действует периодическое поле решетки. Это обстоятельство приводит к тому, что спектр возможных значений энергии валентных электронов распадается на ряд чередующихся разрешенных и запрещенных зон (рис. 53.1), В пределах разрешенных зон энергия изменяется квазинепрерывно.

Рис. 53.1.

Рис. 53.2.

Значения энергии, принадлежащие запрещенным зонам, не могут реализоваться.

 

2.Примесные полупроводники:

В примесных полупроводниках носители заряда создаются благодаря вводимой в кристалл примеси. Это делается для того чтобы создать полупроводник электронной или дырочной проводимости. В полупроводнике электронной проводимости (n -типа) основными носителями заряда являются электроны, а полупроводнике дырочной проводимости (p -типа) – дырки.

Чтобы создать примесный полупроводникn– типа, в кристалл вводят донорную примесь. Донорной она называется потому, что добавляет электроны в структуру кристалла. Например, если в кремний ввести атом элемента из 5 группы таблицы Менделеева, то получится избыточный электрон. Это произойдёт потому, что кремний, имеющий 4 валентных электрона, образует ковалентную связь только с 4 электронами фосфора, который имеет 5 валентных электронов. Получается, один электрон окажется слабо соединённым со своим атомом, и достаточно даже небольшого воздействия, чтобы он его покинул и перешёл в зону проводимости. При этом атом примеси становится положительным ионом.

Избыточные электроны на энергетической диаграмме располагаются на так называемых локальных валентных уровнях. Эти уровни расположены в запрещенной зоне совсем рядом с зоной проводимости. Для того чтобы попасть в неё, электронам локального уровня необходимо получить около 0,1 эВ. Выходит, что в зоне проводимости оказываются в основном электроны созданные примесью, так как им легче перейти в неё, чем тем электронам, который находятся в валентной зоне и которым необходимо перейти всю запрещенную зону. Поэтому электронов оказывается во много раз больше чем дырок, и они являются основными носителями, а дырки неосновными.

Чтобы создать полупроводникp- типа, в кристалл вводится акцепторная примесь. Например, если ввести в кристалл германия атом индия, то в результате получится положительный нескомпенсированный заряд. Это произойдёт потому, что германий имеет 4 валентных электрона, а индий 3. Индий образует ковалентную связь с тремя ближайшими атомами германия, а одна связь будет разрушена и на её месте останется дырка. При незначительном увеличении температуры соседние электроны займут эту дырку, но тем сам они оставят её в другом месте. Таким образом, получится движение положительного заряда. На рисунке показано, где может располагаться дырка в примесном атоме и электрон, который с увеличением температуры займет её место.

На энергетической диаграмме, дырки акцепторной примеси создают локальные валентные уровни в запрещенной зоне, вблизи валентной зоны. Энергия, которая требуется для перехода электронам на локальные уровни, крайне мала, поэтому при воздействии температуры, все они оказываются заполненными электронами, перешедшими из валентной зоны. В связи с этим, в валентной зоне повышается концентрация дырок, вызванная акцепторной примесью. Следовательно, основными носителями заряда в полупроводнике являются дырки, образованные примесью, а электроны являются неосновными носителями.

 

Концентрация носителей заряда зависит от температуры. При самых низких температурах, в зону проводимости начинают проходить электроны примеси. Это продолжается до некоторого значения, пока все электроны не перейдут. Затем с дальнейшим ростом температуры начинает происходить процесс термогенерации и образовываться новые электроны и дырки. В конечном итоге может стать так, что количество дырок будет примерно соответствовать количеству электронов, другими словами произойдет вырождение полупроводника.

 

3. Процессы в электронно-дырочном переходе:

Электронно-дырочный переход - это область, которая разделяет поверхности электронной и дырочной проводимости в монокристалле.

Электронно-дырочный переход изготавливают в едином монокристалле, в котором получена достаточно резкая граница между областями электронной и дырочной проводимостей.

На рисунке изображены две граничащие области полупроводника, одна из которых содержит донорную примесь (область электронной, то есть n-проводимости), а другая акцепторную примесь (область дырочной проводимости, то есть p-проводимости.

При отсутствии приложенного напряжения наблюдается диффузия основных носителей зарядов из одной области в другую. Так как электроны это основные носители заряда, и в области n их концентрация больше они диффундируют в p-область заряжая отрицательно приграничный слой этой области. Но уходя со своего места электроны создают вакантные места – дырки, тем самым заряжая приграничный слой n-области положительно. Таким образом, через достаточно короткий промежуток времени с обеих сторон поверхности раздела образуются противоположные по знаку пространственные заряды.

Электрическое поле, создаваемое пространственными зарядами, препятствует дальнейшей диффузии дырок и электронов. Возникает так называемый потенциальный барьер, высота которого характеризуется разностью потенциалов в пограничном слое.

Электронно-дырочный переход, во внешнем исполнении реализуется в виде полупроводникового диода.

Если к электронно-дырочному переходу приложить внешнее напряжение так, что к области с электронной проводимостью подключён отрицательный полюс источника, а к области с дырочной проводимостью – положительный, то направление напряжения внешнего источника будет противоположно по знаку электрическому полю p-n перехода, это вызовет увеличение тока через p-n переход. Возникнет прямой ток, который будет вызван движение основных носителей зарядов, в нашем случае это движение дырок из p области в n, и движение электронов из n области в p. Следует знать, что дырки движутся противоположно движению электронов, поэтому на самом деле, ток течет в одну сторону. Такое подключение называют прямым. На вольт-амперной характеристике такому подключению будет соответствовать часть графика в первом квандранте.

Но если изменить полярность приложенного к p-n переходу напряжения на противоположное, то электроны из пограничного слоя начнут движение от границы раздела к положительному полюсу источника, а дырки к отрицательному. Следовательно, свободные электроны и дырки будут отдаляться от пограничного слоя, создавая тем самым прослойку, в которой практически отсутствуют носители зарядов. В результате ток в p-n переходе снижается в десятки тысяч раз, его можно считать приближённо равным нулю. Возникает обратный ток, который образован не основными носителями заряда.Такое подключение называют обратным. На вольт-амперной характеристике такому подключению будет соответствовать часть графика в третьем квандранте.

Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...