Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

Кенгуру на пружинах. Тепло — это движение. Эксперимент: термодинамика в действии




Кенгуру на пружинах

 

Есть еще один представитель животного мира, который в определенном смысле расходует больше энергии, чем получает. Это кенгуру. Если сложить всю энергию, которая нужна ему для прыжков в течение дня, то она явно окажется выше, чем та, что он потребляет с пищей. Создается впечатление, что он производит энергию из ничего.

Однако при выполнении этих расчетов биологи упустили из виду, что мышцы ног кенгуру устроены наподобие резинового мяча. Если уронить мяч, то при ударе об пол он сжимается, накапливая энергию, а затем за счет упругости восстанавливает форму. При этом высвобождается энергия, отталкивающая его от пола. Точно так же энергия накапливается в пружине и растягиваемой резиновой ленте. Никакой дополнительной энергии извне в систему не поступает, но мяч подпрыгивает в воздух за счет энергии, запасенной при деформации от удара об пол.

Нечто похожее происходит и с кенгуру. Его мышцы устроены таким образом, что, когда ноги ударяются о землю, в них накапливается энергия, словно при растяжении резиновой ленты. Затем она высвобождается и используется для следующего прыжка. Таким образом, кенгуру для движения нуждается в меньшем количестве пищи. Если бы не эта специфическая конструкция мышц, то вся энергия при приземлении превращалась бы в звук и тепло. Однако, как мы видим, часть ее запасается для повторного использования. Точно так же электрический транспорт использует процесс торможения для пополнения заряда аккумуляторов, который будет расходоваться при последующем разгоне.

 

Тепло — это движение

 

Рассматривая движение энергии в своем теле и в теле кенгуру, мы имеем дело с термодинамикой. Если разложить это слово на составные части, получается «движение тепла». Так оно и есть, если вспомнить, что тепло является одной из форм энергии. Тепло — это кинетическая энергия движущихся молекул вещества. Нагрейте любой предмет — и его молекулы начнут двигаться быстрее. Термодинамика приобрела особое значение в XIX веке, так как позволила объяснить принцип работы паровых двигателей. С тех пор она стала фундаментальной частью науки.

О значении термодинамики свидетельствует изречение одного из самых великих ученых XX века Артура Эддингтона: «Если кто‑ то указывает на то, что ваша теория устройства Вселенной противоречит уравнениям Максвелла (описывающим электромагнитные явления), то тем хуже для Максвелла. Если обнаруживается, что она противоречит наблюдениям, то не исключено, что экспериментаторы что‑ то напутали. Но если ваша теория вступает в противоречие со вторым началом термодинамики, то у вас нет никакой надежды. Вы потерпите крах и будете осмеяны».

Ко второму началу термодинамики, о котором говорит Эддингтон, мы вернемся чуть позже, а пока поговорим об остальных. Как ни парадоксально, но термодинамика начинается с нулевого закона (или начала). Он получил такое название потому, что был сформулирован после первых трех, но фактически является для них основой. Этот закон гласит, что при контакте двух тел, имеющих одинаковую температуру, передачи тепла между ними не происходит. Поскольку тепло представляет собой движение молекул, то передача энергии от одного тела другому и обратно, конечно же, осуществляется, но она взаимно компенсируется и сводится к нулю.

Первое начало термодинамики состоит в том, что в любой изолированной системе запас энергии остается неизменным (закон сохранения энергии). Ее нельзя ни создать, ни уничтожить. Что вложили, то и получите на выходе. Второе начало, о котором говорил Эддингтон, устанавливает, что тепло (то есть энергия) переходит из более нагретого места в менее нагретое. Для полноты картины необходимо упомянуть и о третьем начале, которое гласит, что тело невозможно охладить до абсолютного нуля с помощью конечного числа операций. С каждым шагом вы можете чуть ближе подходить к абсолютному пределу холода, но никогда не сможете его достичь.

 

Эксперимент: термодинамика в действии

 

Наполните электрочайник водой, включите его и послушайте (а если чайник прозрачный, то и посмотрите), что будет происходить. В соответствии с нулевым началом термодинамики до включения чайника передачи тепла между нагревательным элементом и водой не происходит, но, как только вы его включите, элемент нагреется с помощью электричества и вскоре его температура станет выше, чем у окружающей воды. Энергия начнет переходить от горячего вещества к холодному (второе начало).

Затем вы услышите легкое шипение, которое постепенно будет становиться все громче. Незадолго до полного закипания наступает тишина, а в самом конце процесса раздается бурление кипящей воды.

Источником шипящего звука являются многочисленные крохотные пузырьки водяного пара, которые, едва образовавшись, вновь схлопываются. Поскольку нагревательный элемент значительно горячее точки кипения, соприкасающаяся с ним вода получает большую порцию энергии и переходит в газообразное состояние, образуя пузырьки. Они перемещаются в слои воды, удаленные от нагревательного элемента и потому значительно более холодные. Там они вновь переходят в жидкое состояние, производя характерный легкий хлопок. Сливаясь, эти звуки от множества схлопывающихся пузырьков и создают знакомое всем шипение. Непосредственно перед закипанием этот звук пропадает, так как практически вся масса воды подходит к температуре кипения и пузырьки больше не образуются.

Затем, когда достигается температура кипения, в воде появляются крупные пузыри водяного пара, причем не только в точке соприкосновения с нагревательным элементом, а по всему объему жидкости. Мы воспринимаем это как бульканье кипящей воды.

 

Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...