Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

Расстояние от точки до плоскости.




Уравнение поверхности в пространстве.

Определение. Любое уравнение, связывающее координаты x, y, z любой точки поверхности является уравнением этой поверхности.

Общее уравнение плоскости.

Определение. Плоскостью называется поверхность, все точки которой удовлетворяют общему уравнению:

Ax + By + Cz + D = 0,

 

где А, В, С – координаты вектора -вектор нормали к плоскости.

 

Возможны следующие частные случаи:

А = 0 – плоскость параллельна оси Ох

В = 0 – плоскость параллельна оси Оу

С = 0 – плоскость параллельна оси Оz

D = 0 – плоскость проходит через начало координат

А = В = 0 – плоскость параллельна плоскости хОу

А = С = 0 – плоскость параллельна плоскости хОz

В = С = 0 – плоскость параллельна плоскости yOz

А = D = 0 – плоскость проходит через ось Ох

В = D = 0 – плоскость проходит через ось Оу

С = D = 0 – плоскость проходит через ось Oz

А = В = D = 0 – плоскость совпадает с плоскостью хОу

А = С = D = 0 – плоскость совпадает с плоскостью xOz

В = С = D = 0 – плоскость совпадает с плоскостью yOz

 

Уравнение плоскости, проходящей через три точки.

 

Для того, чтобы через три какие- либо точки пространства можно было провести единственную плоскость, необходимо, чтобы эти точки не лежали на одной прямой.

Рассмотрим точки М1(x1, y1, z1), M2(x2, y2, z2), M3(x3, y3, z3) в общей декартовой системе координат.

Для того, чтобы произвольная точка М(x, y, z) лежала в одной плоскости с точками М1, М2, М3 необходимо, чтобы векторы были компланарны.

() = 0

Таким образом,

 

Уравнение плоскости, проходящей через три точки:

Уравнение плоскости по двум точкам и вектору, коллинеарному плоскости.

 

Пусть заданы точки М1(x1, y1, z1), M2(x2, y2, z2) и вектор .

Составим уравнение плоскости, проходящей через данные точки М1 и М2 и произвольную точку М(х, у, z) параллельно вектору .

 

Векторы и вектор должны быть компланарны, т.е.

() = 0

Уравнение плоскости:

Уравнение плоскости по одной точке и двум векторам,

Коллинеарным плоскости.

Пусть заданы два вектора и , коллинеарные плоскости. Тогда для произвольной точки М(х, у, z), принадлежащей плоскости, векторы должны быть компланарны.

Уравнение плоскости:

Уравнение плоскости по точке и вектору нормали.

 

Теорема. Если в пространстве задана точка М00, у0, z0), то уравнение плоскости, проходящей через точку М0 перпендикулярно вектору нормали (A, B, C) имеет вид:

A(x – x0) + B(y – y0) + C(z – z0) = 0.

 

Доказательство. Для произвольной точки М(х, у, z), принадлежащей плоскости, составим вектор . Т.к. вектор - вектор нормали, то он перпендикулярен плоскости, а, следовательно, перпендикулярен и вектору . Тогда скалярное произведение

× = 0

 

Таким образом, получаем уравнение плоскости

. Теорема доказана.

 

Уравнение плоскости в отрезках.

Если в общем уравнении Ах + Ву + Сz + D = 0 поделить обе части на (-D)

,

заменив , получим уравнение плоскости в отрезках:

 

 

Числа a, b, c являются точками пересечения плоскости соответственно с осями х, у, z.

Уравнение плоскости в векторной форме.

 

где

- радиус- вектор текущей точки М(х, у, z),

- единичный вектор, имеющий направление, перпендикуляра, опущенного на плоскость из начала координат.

a, b и g - углы, образованные этим вектором с осями х, у, z.

p – длина этого перпендикуляра.

В координатах это уравнение имеет вид:

xcosa + ycosb + zcosg - p = 0.

Расстояние от точки до плоскости.

Расстояние от произвольной точки М00, у0, z0) до плоскости Ах+Ву+Сz+D=0 равно:

Пример. Найти уравнение плоскости, зная, что точка Р(4; -3; 12) – основание перпендикуляра, опущенного из начала координат на эту плоскость.

Таким образом, A = 4/13; B = -3/13; C = 12/13, воспользуемся формулой:

A(x – x0) + B(y – y0) + C(z – z0) = 0.

Пример. Найти уравнение плоскости, проходящей через две точки P(2; 0; -1) и

Q(1; -1; 3) перпендикулярно плоскости 3х + 2у – z + 5 = 0.

Вектор нормали к плоскости 3х + 2у – z + 5 = 0 параллелен искомой плоскости.

Получаем:

Пример. Найти уравнение плоскости, проходящей через точки А(2, -1, 4) и

В(3, 2, -1) перпендикулярно плоскости х + у + 2 z – 3 = 0.

Искомое уравнение плоскости имеет вид: A x + B y + C z + D = 0, вектор нормали к этой плоскости (A, B, C). Вектор (1, 3, -5) принадлежит плоскости. Заданная нам плоскость, перпендикулярная искомой имеет вектор нормали (1, 1, 2). Т.к. точки А и В принадлежат обеим плоскостям, а плоскости взаимно перпендикулярны, то

Таким образом, вектор нормали (11, -7, -2). Т.к. точка А принадлежит искомой плоскости, то ее координаты должны удовлетворять уравнению этой плоскости, т.е. 11×2 + 7×1 - 2×4 + D = 0; D = -21.

Итого, получаем уравнение плоскости: 11 x - 7 y – 2 z – 21 = 0.

Пример. Найти уравнение плоскости, зная, что точка Р(4, -3, 12) – основание перпендикуляра, опущенного из начала координат на эту плоскость.

Находим координаты вектора нормали = (4, -3, 12). Искомое уравнение плоскости имеет вид: 4 x – 3 y + 12 z + D = 0. Для нахождения коэффициента D подставим в уравнение координаты точки Р:

16 + 9 + 144 + D = 0

D = -169

Итого, получаем искомое уравнение: 4 x – 3 y + 12 z – 169 = 0

Пример. Даны координаты вершин пирамиды А1(1; 0; 3), A2(2; -1; 3), A3(2; 1; 1),

A4(1; 2; 5).

1) Найти длину ребра А1А2.

2) Найти угол между ребрами А1А2 и А1А4.

 

3) Найти угол между ребром А1А4 и гранью А1А2А3.

Сначала найдем вектор нормали к грани А1А2А3 как векторное произведение векторов и .

 

= (2-1; 1-0; 1-3) = (1; 1; -2);

 

Найдем угол между вектором нормали и вектором .

; -4 – 4 = -8.

Искомый угол g между вектором и плоскостью будет равен g = 900 - b.

4) Найти площадь грани А1А2А3.

5) Найти объем пирамиды.

(ед3).

6) Найти уравнение плоскости А1А2А3.

Воспользуемся формулой уравнения плоскости, проходящей через три точки.

 

2x + 2y + 2z – 8 = 0

x + y + z – 4 = 0;


 

Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...