Расстояние от точки до плоскости.
Стр 1 из 3Следующая ⇒ Уравнение поверхности в пространстве. Определение. Любое уравнение, связывающее координаты x, y, z любой точки поверхности является уравнением этой поверхности. Общее уравнение плоскости. Определение. Плоскостью называется поверхность, все точки которой удовлетворяют общему уравнению: Ax + By + Cz + D = 0,
где А, В, С – координаты вектора
Возможны следующие частные случаи: А = 0 – плоскость параллельна оси Ох В = 0 – плоскость параллельна оси Оу С = 0 – плоскость параллельна оси Оz D = 0 – плоскость проходит через начало координат А = В = 0 – плоскость параллельна плоскости хОу А = С = 0 – плоскость параллельна плоскости хОz В = С = 0 – плоскость параллельна плоскости yOz А = D = 0 – плоскость проходит через ось Ох В = D = 0 – плоскость проходит через ось Оу С = D = 0 – плоскость проходит через ось Oz А = В = D = 0 – плоскость совпадает с плоскостью хОу А = С = D = 0 – плоскость совпадает с плоскостью xOz В = С = D = 0 – плоскость совпадает с плоскостью yOz
Уравнение плоскости, проходящей через три точки.
Для того, чтобы через три какие- либо точки пространства можно было провести единственную плоскость, необходимо, чтобы эти точки не лежали на одной прямой. Рассмотрим точки М1(x1, y1, z1), M2(x2, y2, z2), M3(x3, y3, z3) в общей декартовой системе координат. Для того, чтобы произвольная точка М(x, y, z) лежала в одной плоскости с точками М1, М2, М3 необходимо, чтобы векторы ( Таким образом,
Уравнение плоскости, проходящей через три точки: Уравнение плоскости по двум точкам и вектору, коллинеарному плоскости.
Пусть заданы точки М1(x1, y1, z1), M2(x2, y2, z2) и вектор Составим уравнение плоскости, проходящей через данные точки М1 и М2 и произвольную точку М(х, у, z) параллельно вектору
Векторы ( Уравнение плоскости: Уравнение плоскости по одной точке и двум векторам, Коллинеарным плоскости. Пусть заданы два вектора Уравнение плоскости: Уравнение плоскости по точке и вектору нормали.
Теорема. Если в пространстве задана точка М0(х0, у0, z0), то уравнение плоскости, проходящей через точку М0 перпендикулярно вектору нормали A(x – x0) + B(y – y0) + C(z – z0) = 0.
Доказательство. Для произвольной точки М(х, у, z), принадлежащей плоскости, составим вектор
Таким образом, получаем уравнение плоскости
Уравнение плоскости в отрезках. Если в общем уравнении Ах + Ву + Сz + D = 0 поделить обе части на (-D)
заменив
Числа a, b, c являются точками пересечения плоскости соответственно с осями х, у, z. Уравнение плоскости в векторной форме.
a, b и g - углы, образованные этим вектором с осями х, у, z. p – длина этого перпендикуляра. В координатах это уравнение имеет вид: xcosa + ycosb + zcosg - p = 0. Расстояние от точки до плоскости. Расстояние от произвольной точки М0(х0, у0, z0) до плоскости Ах+Ву+Сz+D=0 равно: Пример. Найти уравнение плоскости, зная, что точка Р(4; -3; 12) – основание перпендикуляра, опущенного из начала координат на эту плоскость.
Таким образом, A = 4/13; B = -3/13; C = 12/13, воспользуемся формулой: A(x – x0) + B(y – y0) + C(z – z0) = 0. Пример. Найти уравнение плоскости, проходящей через две точки P(2; 0; -1) и Q(1; -1; 3) перпендикулярно плоскости 3х + 2у – z + 5 = 0. Вектор нормали к плоскости 3х + 2у – z + 5 = 0 Получаем: Пример. Найти уравнение плоскости, проходящей через точки А(2, -1, 4) и В(3, 2, -1) перпендикулярно плоскости х + у + 2 z – 3 = 0. Искомое уравнение плоскости имеет вид: A x + B y + C z + D = 0, вектор нормали к этой плоскости Таким образом, вектор нормали Итого, получаем уравнение плоскости: 11 x - 7 y – 2 z – 21 = 0. Пример. Найти уравнение плоскости, зная, что точка Р(4, -3, 12) – основание перпендикуляра, опущенного из начала координат на эту плоскость. Находим координаты вектора нормали 16 + 9 + 144 + D = 0 D = -169 Итого, получаем искомое уравнение: 4 x – 3 y + 12 z – 169 = 0 Пример. Даны координаты вершин пирамиды А1(1; 0; 3), A2(2; -1; 3), A3(2; 1; 1), A4(1; 2; 5). 1) Найти длину ребра А1А2. 2) Найти угол между ребрами А1А2 и А1А4.
3) Найти угол между ребром А1А4 и гранью А1А2А3. Сначала найдем вектор нормали к грани А1А2А3
Найдем угол между вектором нормали и вектором
Искомый угол g между вектором и плоскостью будет равен g = 900 - b. 4) Найти площадь грани А1А2А3. 5) Найти объем пирамиды.
6) Найти уравнение плоскости А1А2А3. Воспользуемся формулой уравнения плоскости, проходящей через три точки.
2x + 2y + 2z – 8 = 0 x + y + z – 4 = 0;
Воспользуйтесь поиском по сайту: ![]() ©2015 - 2025 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...
|