Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

Измерение заряда электрона




 

Физики прекрасно понимали, что, несмотря на все успехи электронной теории, она остается незавершенной– ни масса, ни заряд электрона еще не определены непосредственным опытом. Это было слабым местом теории – ее ахиллесовой пятой.

Измерение заряда электрона – стало первоочередной задачей, над которой начали трудиться многие специалисты.

Предшествующие исследования заряда электрона показали, что он ничтожно мал; было совершенно ясно, что если к какому‑ либо большому предмету добавить один электрон или, наоборот, отнять его, то уловить изменение заряда этого предмета не сможет ни один прибор на свете.

Для большого воздушного шара‑ стратостата майский жук, залетевший в гондолу, незаметен, а для маленького детского воздушного шарика жук будет чересчур тяжелым пассажиром.

Поэтому можно попытаться взять настолько маленькое тело, совсем ничтожную пылинку, чтобы потеря ею одного электрона уже стала заметна.

Академик А. Ф. Иоффе, намереваясь измерить заряд электронов, пошел именно по такому пути. В качестве пылинок он использовал мельчайшие капельки цинковой амальгамы, то есть ртути, к которой было добавлено небольшое количество цинка.

Две горизонтальные металлические пластины, разделенные воздушным промежутком, составляли главную часть прибора для измерения заряда. В верхней пластине имелось небольшое отверстие. С одной стороны воздушный промежуток между пластинами освещала обычная электрическая лампочка, с другой стороны стояла лампа – источник ультрафиолетовых лучей. Эта лампа имела заслонку, чтобы открывать ее на короткое время.

Спереди был пристроен микроскоп, через который можно было наблюдать все, что будет происходить во время опыта в промежутке между пластинами (рис. 40).

Рис. 40. Схема прибора, построенного академиком А. Ф. Иоффе для измерения заряда электрона.

 

К пластинам была приложена определенная разность потенциалов, причем верхняя пластина соединялась с положительным полюсом батареи, а нижняя – с отрицательным. Напряжение на пластинах можно было регулировать по желанию, то есть увеличивать или уменьшать так, как это могло бы потребоваться по ходу предстоящего опыта.

После проверки работы всех частей прибора А. Ф. Иоффе приступил к измерению. В промежуток между пластинами через отверстие в верхней пластинке вдули некоторое количество тончайших ртутных капелек.

Капельки рассеялись по всему воздушному промежутку и под действием силы тяжести медленно, плавно начали оседать на нижнюю пластину.

Иоффе включил напряжение. Между пластинами образовалось электрическое поле. Тотчас же капельки, которые обладали положительным зарядом, [14] стремительно понеслись вниз к отрицательно заряженной пластине, а капельки, имевшие отрицательный заряд, стали подниматься вверх, притягиваясь к положительно заряженной пластине.

Среди отрицательно заряженных капелек имелось несколько таких, которые почти недвижимо висели в воздухе, – не опускались и не поднимались.

Чтобы совсем остановить движение одной отрицательно заряженной капельки, Иоффе так подобрал разность потенциалов между пластинами, что притяжение верхней пластины точно уравновесило вес капельки. Отрицательно заряженная капелька повисла в воздухе совершенно неподвижно.

Желая убедиться, что капелька сама по себе ни опуститься ни подняться не может, Иоффе держал ее во взвешенном состоянии несколько суток, и она висела, словно привязанная невидимой ниточкой.

Перед началом опыта Иоффе записал разность потенциалов на пластинках, которая удерживала капельку во взвешенном состоянии, а затем на мгновение приоткрыл заслонку на ультрафиолетовой лампе. Лучи пронизали воздушный промежуток между пластинами и вырвали из капельки несколько электронов (вспомните опыт Столетова), заряд капли изменился, и она полетела вниз.

Иоффе увеличил напряжение на пластинах, подтянул капельку на прежнее место и опять заставил ее висеть неподвижно.

Затем он приоткрыл заслонку на ультрафиолетовой лампе, и снова лучи согнали с капельки несколько электронов, капелька стала падать, но Иоффе подтянул ее и уравновесил.

В третий раз ученый открыл заслонку, и в третий раз ультрафиолетовые лучи согнали с капельки несколько электронов, а Иоффе опять вернул ее на старое место. Так он повторял эту операцию до тех пор, пока никакое изменение напряжения на пластинах уже не могло удерживать капельку во взвешенном состоянии, и она падала, повинуясь только земному тяготению.

Притяжение положительно заряженной пластины перестало оказывать на нее свое влияние. Это означало, что ультрафиолетовые лучи лишили капельку ее заряда, электроны покинули капельку.

Капельке дали спокойно упасть, а через отверстие в верхней пластине впустили новую порцию капелек. Среди них выбрали одну, удержали ее в неподвижном состоянии, и опыт начался сначала.

В конце концов и вторая капелька, лишившись заряда, опустилась вниз; ее заменили, опыт продолжался. Только большое число одинаковых опытов могло дать надежный результат.

Проходили дни за днями. Щелкала заслонка, открывая и закрывая путь ультрафиолетовым лучам.

Через поле зрения микроскопа прошло несколько сот капель. В лабораторном журнале выстроились длинные столбцы цифр. Число измерений достигло нескольких сотен.

И среди этих измерений ни разу не случалось, чтобы заряд, выбиваемый из пылинки, оказался меньше совершенно определенной величины.

Заряд уходил всегда только целыми порциями, и этих порций было либо одна, либо две, либо три, четыре, пять, но ни разу заряд не уменьшился на полпорции или на полторы или на две с половиной.

Таким образом было установлено, что электрический заряд уходит только в виде определенных порций отрицательного электричества, то есть в виде электронов.

Работа продолжалась. Вместо ртутных капелек стали вдувать цинковые пылинки и пылинки других веществ, и всегда электрический заряд покидал пылинку одинаковыми порциями. Это означало, что «цинковый» электрон ничем не отличается от «медного». Заряд электрона, выбитого из золотой пылинки, нисколько не больше и не меньше заряда электрона, выбитого из железной пылинки. Все электроны – одинаковы.

Но это было не все! Неизвестным оставалось самое главное – заряд одного электрона. Однако невидимка уже не мог прятаться. А. Ф. Иоффе знал, что все наимельчайшие зарядики равны между собой, и знал также, сколько этих зарядиков‑ электронов он согнал ультрафиолетовыми лучами с каждой капельки ртути.

Оставалось решить совсем простенькую арифметическую задачу: разделить величину первоначального заряда капли на число согнанных электронов и в частном от деления получить заряд одного электрона.

Но прежде чем решать такую задачу, предстояло узнать, чему же был равен заряд капли до того, как ее стали освещать ультрафиолетовыми лучами? И это было хотя и самое трудное дело, но все же далеко не безнадежное, ведь капелька, висевшая в промежутке между двумя пластинами, подвергалась действию двух сил: сила тяжести тянула ее вниз, а электрическая сила – вверх. И обе эти силы были равны, потому что капелька не подымалась и не падала – висела неподвижно. Значит, стоило только узнать, чему равен вес капельки ртути, и тогда стала бы известна величина электрической силы.

Вес капельки надо было измерить. Однако эта капелька была так мала, что даже в поле зрения микроскопа она казалась не шариком, а только блестящей звездочкой. Измерить ее обычным способом, как измеряют маленькие шарики, было невозможно, и Иоффе применил иной способ.

Зная удельный вес ртути и измерив скорость падения капельки, можно очень точно определить ее вес. Так А. Ф. Иоффе и сделал: когда капелька в конце опыта полностью лишилась своего заряда и стала падать, ученый тщательно измерил скорость ее падения, а затем вычислил вес капельки. Так А. Ф. Иоффе узнал величину электрических сил, действовавших на каплю, а затем и величину заряда капли, потом разделил на число выбитых электронов и получил заряд одного электрона.

Величина заряда электрона была измерена таким способом непосредственно.

По современным измерениям заряд электрона равен 4, 8∙ 10‑ 10 абсолютных электростатических единиц, или 1, 6∙ 10‑ 19 кулона. Иначе говоря, в одном кулоне содержится такое количество электронов, которое определяется миллиардами миллиардов, а именно равно 6, 25∙ 1018.

После измерения заряда электрона физики снова вернулись к опыту с магнитом и катодной трубкой, который был поставлен в конце прошлого столетия. Тогда они сумели очень точно измерить, насколько отклоняется электронный пучок в магнитном поле, и это позволило установить соотношение между зарядом электрона и его массой.

Теперь ученые повторили этот опыт и, зная величину заряда электрона, определили, что его масса действительно равна 9, 1∙ 10‑ 28 грамма.

Электрон – одна из мельчайших частиц материи. Он легче дробинки во столько же раз, во сколько раз дробинка легче земного шара.

Почти двадцать лет ученые трудились, чтобы измерить массу и заряд электрона и доказать его существование. Их усилия увенчались полной победой. Реальность электрона была утверждена опытом.

И вся история этого открытия блестяще подтвердила гениальное положение, выдвинутое товарищем И. В. Сталиным: «В противоположность идеализму, который оспаривает возможность познания мира и его закономерностей, не верит в достоверность наших знаний, не признает объективной истины, и считает, что мир полон „вещей в себе“, которые не могут быть никогда познаны наукой, – марксистский философский материализм исходит из того, что мир и его закономерности вполне познаваемы, что наши знания о законах природы, проверенные опытом, практикой, являются достоверными знаниями, имеющими значение объективных истин, что нет в мире непознаваемых вещей, а есть только вещи, еще не познанные, которые будут раскрыты и познаны силами науки и практики». [15]

В напряженной борьбе с мракобесами и реакционерами из идеалистического лагеря победу одержали представители передовой материалистической науки. Они на опыте доказали, что электрон – не плод воображения ученых, придумавших электрон только для того, чтобы было удобнее объяснить электрические явления.

Электрон действительно существует, и наши знания о нем – достоверные знания!

 

 

Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...