Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

Опять непонятная закономерность




Опять непонятная закономерность

 

Для серии новых опытов Усагин, по указанию Столетова, вырезал из плотного картона диск с семью круглыми одинаковыми отверстиями.

Усагин укрепил этот диск на оси так, чтобы его можно было вращать перед отверстием (оправой объектива) фонаря с нужной для опыта скоростью. Вращаясь, диск попеременно то открывал, то закрывал доступ свету из фонаря к цинковому электроду.

В то время, когда Усагин вращал картонный диск, Столетов следил за стрелкой гальванометра. Свет фонаря прорывался сквозь отверстия диска отдельными короткими порциями. При каждом воздействии светового луча, стрелка гальванометра совершала резкий скачок в сторону. Стремительность колебаний стрелки показывала, что ток в цепи прибора возникает мгновенно.

Ускоряя и замедляя скорость вращения картонного диска, Столетов установил, что никакой задержки или промедления в образовании тока не происходит: свет вспыхивает – ток возникает.

Хотя одно из явлений служит причиной, а другое – следствием, промежуток времени между ними был ничтожно мал. Можно считать, что свет и ток возникают одновременно.

Столетову удалось установить этот факт с точностью до одной тысячной доли секунды. Советские ученые, повторившие опыты Столетова с более совершенной и точной аппаратурой, доказали, что между вспышкой света и образованием тока в приборе не проходит даже одной трехмиллионной доли секунды.

Поразительное свойство прибора Столетова мгновенно отзываться на свет позволило в наши дни создать звуковое кино, читающие станки, «говорящие» часы и другие замечательные устройства.

Результаты своих дальнейших исследований Столетов записал в лабораторном журнале: «разряжающим действием обладают главным образом ультрафиолетовые лучи».

В этом Столетов убеждался неоднократно; достаточно было перегородить луч света от фонаря обыкновенной стеклянной пластинкой, и ток в приборе мгновенно прекращался. Самый сильный видимый свет не мог заменить даже слабого потока ультрафиолетовых лучей. Электрические заряды цинкового кружка были нечувствительны к лучам видимого света даже при большой их энергии.

Такая зависимость электрических зарядов, находящихся в цинковой пластинке, от лучей только определенного рода, показалась ученым очень важным признаком, теснейшим образом связанным со свойствами света и электричества.

Продолжая опыты, Столетов сделал еще одно наблюдение: та часто лучей, которая отражается цинковой пластинкой, никакого действия не производит. Важна только та часть, которая поглощается пластинкой, и чем больше поглощено ультрафиолетовых лучей, тем сильнее ток.

Эти закономерности удалось объяснить только много позже.

Но уже во времена Столетова его опыты над «распылением» электричества, как он сам выражался, подтверждали мысль о существовании элементарных отрицательных зарядов – частичек электричества. Действительно, опыты Столетова легче всего объяснялись предположением (потом подтвердившимся), что свет выбивает из металлов отдельные электроны.

 

Электроны вылетают из атомов

 

В 90‑ х годах прошлого столетия в биографии электрона оказались записанными ответы на три анкетных вопроса: «имя», «масса» и «заряд». Однако сведения, занесенные в две последние графы, не заслуживали безусловного доверия, их следовало подтвердить непосредственными лабораторными измерениями. Но должно было пройти почти пятнадцать лет, прежде чем нашли способ, как определить опытным путем точные значения массы и заряда электрона.

За этот промежуток времени ученые, продолжая исследовать мир предельно малых частиц, сумели приобрести сведения и для четвертой графы анкеты: «местожительство».

В 1896 году были впервые замечены явления радиоактивности урана, способность его испускать невидимые лучи. Три года спустя знаменитый физик Мария Склодовская‑ Кюри, совместно со своим мужем Пьером Кюри, нашла новые радиоактивные, то есть излучающие элементы. Радиоактивными оказались кроме урана: полоний, радий, торий.

Уран и торий были известны и ранее, а радий и полоний были открыты Склодовской‑ Кюри, которая выделила их из урановой руды.

Радиоактивные вещества привлекали внимание физиков своими необычайными, поистине волшебными свойствами. В присутствии радия драгоценные камни даже в полной темноте начинают сверкать и искриться, а краски, изготовленные с примесью сернистого цинка, излучают лунное зеленоватое свечение. Стекло пробирки с радием со временем меняет окраску и приобретает фиолетовый оттенок. Электрические машины в присутствии радия перестают действовать, так как воздух под влиянием лучей радия становится проводником электричества. Прикосновение пробирки с радием к коже вызывает тяжелые трудно заживляемые ожоги.

Радий портит фотографические пластинки, упакованные даже не в картонные, а в металлические коробки.

Самые обычные вещества, соприкасавшиеся с радием в свою очередь становятся радиоактивными. Лучи радиоактивных веществ проходят сквозь стекло и металлы (рис. 38).

Рис. 38. Излучение радиоактивных элементов проникает сквозь непрозрачные тела. На рисунке изображена медаль, сфотографированная с помощью радиоактивных лучей.

 

Открытие радиоактивных элементов подтвердило гениальное предвидение, высказанное Фридрихом Энгельсом и русскими передовыми учеными прошлого века – А. М. Бутлеровым и Н. А. Умовым том, что атомы лишь кажутся неделимыми, на самом же деле они представляют особые сложные миры.

Однажды в лаборатории Кюри произошел чрезвычайно интересный случай, показавший ученым одну важную особенность радия.

Крупинки радиевой соли, добытые Марией Склодовской из отходов урановой руды, супруги хранили в ампулах, – в небольших, наглухо запаянных, стеклянных трубочках. Пьеру Кюри для опытов понадобилась новая порция радия. Кюри взял в одну руку ампулу, а в другую нож, намереваясь метким и осторожным ударом отбить кончик ампулы так, чтобы не рассыпать драгоценное вещество. Намечая место удара, Пьер Кюри приложил лезвие ножа к ампуле и в тот же момент услышал характерный треск электрической искры. В стеклянной стенке ампулы появилась трещинка и маленькая круглая дырочка.

Пьер Кюри позвал жену, и они вдвоем сквозь лупу стали рассматривать отверстие, пробитое неизвестно откуда взявшейся искрой.

Пьер Кюри взял из шкафа другую ампулу, и оба исследователя, напрягая слух и зрение, склонились над ней. Пьер Кюри осторожно приблизил нож к ампуле. Как только лезвие коснулось стекла, раздался треск электрической искры. Пьер Кюри почувствовал легкий толчок в руку, а в стекле ампулы появилась крошечная круглая дырочка. Сомнений не оставалось: за время хранения радий выделил электрические заряды.

Затем было обнаружено, что радий непрерывно выделяет из себя газ радон, который со временем превращается в обычный гелий. Распад атомов больше не вызывал сомнений.

 

Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...