Главная | Обратная связь
МегаЛекции

Меры подавления статической электризации.





Устранение образования значительных статического электричества достигается при помощи следующих мер:

· Заземление металлических частей производственного оборудования;

· Увеличение поверхностной и объемной проводимости диэлектриков;

· Предотвращение накопления значительных статических зарядов путем установки в зоне электрозащиты специальных неитрализаторов.

Все проводящее оборудование и электропроводящие неметаллические предметы должны быть заземлены независимо от применения других мер защиты от статического электричества.

Неметаллическое оборудование считается заземленным, если сопротивление стекания тока на землю с любых точек его внешней и внутренней поверхностей не превышает 107 Ом при относительной влажности воздуха 60%. Такое сопротивление обеспечивает достаточно малое значение постоянной времени релаксации зарядов.

Заземление устройства для защиты от статического электричества, как правило, соединяется с защитными заземляющими устройствами электроустановок. Практически, считают достаточным сопротивление заземляющего устройства для защиты от статического электричества около 100 Ом. К заземляющему устройству присоединяют отдельными ответвлениями от магистрали аппараты и машины, являющиеся источниками статической электризации (смесители, вальцы, каландры, дробилки, сливно-наливные устройства нефтепродуктов и др.). Автоцистерны во время слива или налива горючих жидкостей заземляют переносным заземлением в виде гибкого многопроволочного провода.

Эффективным способом подавления электризации нефтепродуктов является введение в основной продукт специальных присадок, например, элеата хрома, элеата кобальта и др. Кроме того с целью уменьшения статической электризации при сливе нефтепродуктов и других горючих жидкостей необходимо избегать падения и разбрызгивания струи с высоты; сливной шланг (рукав) следует опускать до самого дна цистерны или другой емкости. Неметаллические наконечники этих сливных шлангов во избежание протекания на землю или незаземленные части оборудования необходимо заземлять гибким медным проводником.



Для повышения электропроводности резинотехнических изделий в их состав вводят такие антистатические вещества, как графит и сажа. Такие присадки вводят в резиновые шланги для налива и перекачки ЛВЖ, что в значительной мере снижает опасность воспламенения этих жидкостей при переливании их в передвижные емкости (автоцистерны, железнодорожные цистерны).

Нейтрализация электрических зарядов может осуществляться путем ионизации воздуха, разделяющего заряженные тела. На практике применяются ионизаторы индукционные, высоковольтные или радиационные.

Индукционные нейтрализаторы статического электричества состоят из несущих металлических или непроводящих стержней, на которых укреплены заземленные острия или тонкие проволоки и располагаются вблизи наэлектризованного тела (например, движущиеся ленты) на расстоянии 5 – 10 мм. Электрическое поле создается у электродов-стержней с зарядами наэлектризованного материала.

       
   

 

 


Рис. 1. Схема индукционного нейтрализатора.

1 – игла-электрод.

Вблизи острия образуется электрическое поле высокой напряженности, под действием которого происходит ударная ионизация с образованием положительных и отрицательных ионов. При этом ионы противоположные заряду наэлектризованного тела знака устремляются к его поверхности и нейтрализуют в значительной мере его электрический заряд.

Для защиты обслуживающего персонала от случайного прикосновения к электродам их снабжают кожухами.

Контроль за качеством работы нейтрализаторов ведется по показаниям микроамперметра или по свечению неоновой лампочки, включенной между электродами и заземляющим устройством.

Высоковольтные нейтрализаторы статического электричества работают на принципе коронного разряда, создаваемого электродами, находящимися под высоким напряжением повышающего трансформатора. Положительные ионы, образованные вблизи электродов, направляются на отрицательно заряженный материал-диэлектрик, нейтрализуя его электростатический заряд.

Радиоизотопные нейтрализаторы применяются во взрывоопасных производствах химической промышленности – в установках производства полиэтиленовой пленки, бумаги, тканей и т.д. Они просты в конструктивном исполнении и не требуют источников электропитания. Наибольшей ионизирующей способностью обладают ионизаторы с a-излучением. Глубина проникновения a-излучения в воздухе около 30 мм, что делает безопасным применение этого вида излучения для обслуживающего персонала.

           
   
   
 
 

 

 


 

Рис. 2. Схема высоковольтного нейтрализатора.

1 – игла-электрод.

2 – металлическая оболочка-электрод.

 

 

Рис.3. Схема радиоизотопного нейтрализатора.

1 – активный препарат.

2 – металлический контейнер.

На рис.3 схематически изображен радиоизотопный нейтрализатор с использованием 239Pu. Нейтрализатор состоит из металлического контейнера, в котором укреплены держатели активного материала – источника излучения. Держатели вручную можно поворачивать на 1800 с тем, что бы при необходимости направлять излучение вовнутрь. В рабочем помещении активная поверхность обращена к наэлектризованному объекту через проем в контейнере.

Отвод статического электричества с тела человека осуществляется путем устройства электропроводящих полов в производственных помещениях, рабочих площадок и других приспособлений, а также обеспечение токопроводящей обувью и антистатическими халатами.

Молниезащита.





Рекомендуемые страницы:

Воспользуйтесь поиском по сайту:
©2015- 2021 megalektsii.ru Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав.