Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

41) Межклеточные взаимодействия на разных этапах онтогенеза. Эмбриональная индукция и ее виды. Опыты Г.Шпемана в изучении явления эмбриональной индукции.




38) Пролиферация клеток, запрограммированная клеточная гибель, адгезия клеток, замыкание закладок как механизмы морфогенетических преобразований в онтогенезе. Врождённые пороки развития как следствия нарушения данных процессов. Примеры.

Пролиферация - увеличение числа клеток путем митоза, которое приводит к росту и обновлению ткани.

Апоптоз — явление программируемой клеточной смерти, сопровождаемой набором характерных цитологических признаков (маркеров апоптоза) и молекулярных процессов, имеющих различия у одноклеточных и многоклеточных организмов.

Апоптоз — форма гибели клетки, проявляющаяся в уменьшении ее размера, конденсации и фрагментациихроматина, уплотнении наружной и цитоплазматической мембран без выхода содержимого клетки в окружающую среду. Несмотря на то, что обычно более принципиальным является аспект программированности и активный характер гибели, чем сопутствующие ей морфологические изменения, чаще используется термин «апоптоз», вероятно, из-за его краткости.

При изложении клеточных механизмов в гл. 8 приводились примеры иллюстрирующие, как нарушение этих механизмов может приводить к формированию врожденных пороков развития. В данной главе описаны лишь некоторые пороки развития тех органов, морфогенез которых был рассмотрен в гл. 7. Их следует рассматривать как отдельные примеры подкрепляющие обоснованность изучения онтофилогенетических предпосылок формирования врожденных пороков развития.

 

Различные варианты расщелины позвоночника как бы соответствуют очень древнему примитивному строению его у низших позвоночных Скрытая расщелина позвоночника (spina bifida occulta)—это дефект в виде аплазии спинных дужек и остистых отростков (рис. 9. 2, А). Дужки позвонков при нормальном развитии образуются из мигрирующих клеток склеротомов под индуцирующим влиянием со стороны хорды, спинного мозга и спинномозговых узлов. При описываемом пороке происходит остановка их развития, что, вероятно, может быть связано с нарушением необходимых индуцирующих воздействий.

 

Скрытые формы расщелины первого крестцового позвонка встречаются среди людей с частотой около 10%, а первого шейного—с частотой около 3%. Как правило, спинной мозг и спинномозговые нервы не изменены и не имеется никаких серьезных нарушений. Кожа над дефектом также не изменена, но иногда порок можно заподозрить по небольшой ямочке или пучку волос над ним. Чаще всего дефект выявляется как рентгенологическая находка. О возможной наследственной природе порока свидетельствуют такие данные: скрытые формы расщелины дужек позвонков встречаются у 14, 3% матерей, у 6, 1 % отцов и у 26, 8% сибсов пробандов с различными формами несращения нервной трубки и позвонков.

 

Более грубым пороком являются кистозная расщелина позвоночника (spina bifida cystia) и полный рахисхиз. Кистозная расщелина характеризуется наличием грыжевого мешка, а полный рахисхиз — дефектом мозговых оболочек, мягких покровов и лежащим открыто в виде пластинки или желоба спинным мозгом (рис. 9. 2, Б). В последнем случае нервные валики не соединяются в трубку либо из-за ослабления индуцирующего влияния подлежащей хорды, либо из-за действия тератогенных факторов на нейроэпителиальные клетки.

 

Пороки развития звукопроводящей системы среднего уха могут быть причиной врожденного нарушения слуха наряду с нарушениями других отделов слухового анализатора. Врожденная фиксация стремечка приводит к врожденной проводниковой глухоте при нормальном развитии уха в остальном. Дефекты молоточка и наковальни часто сочетаются с синдромом первой дуги. Механизмами возникновения подобных пороков развития могут быть нарушения рассасывания (гибели) молодой соединительной ткани в барабанной полости и остановка развития всей области первой висцеральной дуги. Большинство видов врожденной глухоты обусловлены генетически и носят наследственный характер.

 

Атрезия наружного слухового прохода возникает из-за ослабления процесса канализации (рассасывания пробки наружного слухового прохода) в области первого жаберного кармана. Этот врожденный порок также часто сочетается с синдромом (аномаладом) первой дуги.

 

Пороки развития пищеварительной системы выражаются в недоразвитии (гипогенезия) или полном отсутствии развития (агенезия) участков кишечной трубки или ее производных, в отсутствии естественного отверстия, сужении канала, персистировании эмбриональных структур, незавершенном повороте и гетерогонии различных тканей в стенку желудочно-кишечного тракта.

 

Атрезии и стенозы встречаются с частотой примерно 0, 8 на 1000 новорожденных. Существует несколько гипотез, объясняющих механизм их возникновения. По одной из них, это персистирование физиологической атрезии, заключающееся во временной закупорке просвета кишечной трубки на 6-й неделе развития в связи с нарушением реканализации. По другой — это сосудистая недостаточность. В эксперименте на собаках путем перевязки у плодов верхней брыжеечной артерии удалось получить некоторые формы атрезии и стеноз. Есть гипотеза внутриутробного воспалительного процесса. Этиология этих пороков гетерогенна. Среди изолированных пороков, по-видимому, большинство мультифакториальны, а среди тех, что являются компонентами множественных врожденных пороков, значительная часть — результат хромосомных и генных мутаций.

 

39) Регуляция развития человека и животных на разных этапах онтогенеза. Генетическая регуляция развития (генетическая детерминированность развития, дифференциальная активность генов, влияние ооплазматической сегрегации, Т-локус); гомеозисные и дизруптивные мутации.

 

Весь процесс развития организма регулируется генетической программой. В большинстве случаев геном всех клеток остается одинаковым. Это означает, что при развитии " нужные гены работают в нужное время и в нужном месте" (с)

Генетическая детерминированность - рост и развитие зависят от генома человека, однако взаимодействие совокупности генов друг с другом и с различными факторами внешней среды может в той или иной мере влиять на фенотип.

Экспериментально доказано, что гены работают не всегда, есть определенная закономерность в очередности работы генов, неработающие гены сохраняются в клетке в течение всей ее жизни и, при определенных условиях, снова могут начать работать. Это явление называется дифференциальной активностью генов.

Ооплазматическая сегрегация - перераспределение биологически активных молекул (локальных детерминант) в цитоплазме яйцеклетки в результате ее активации.

Во время движения мужского пронуклеуса в яйце происходят сложные перемещения цитоплазмы. В результате она становится более неоднородной. Эти процессы получили название ооплазматическои сегрегации (разделения). Они хорошо заметны в тех случаях, когда разные участки цитоплазмы содержат разноцветные гранулы (желток, темный пигмент и др. ).

Механизмы движения цитоплазмы в деталях не изучены. Очевидно, что главную роль в этих перемещениях играет цитоскелет. В частности, важная роль может принадлежать центриоли сперматозоида и отходящим от нее микротрубочкам. С помощью вещества колхицина, нарушающего сборку микротрубочек, ооплазматическую сегрегацию удается подавить. Можно предположить, что в разных участках цитоплазмы яйцеклетки содержатся различные вещества (их назвали локальными детерминантами, т. е. " определителями" ), которые определяют судьбу клеток. (Еще один пример локальных детерминант - это вещества полярных гранул, наличие которых необходимо и достаточно для развития первичных половых клеток). Один из экспериментов, которые ставились для проверки этой гипотезы, заключался в центрифугировании яиц асцидий. При быстром вращении в центрифуге разные зоны цитоплазмы меняют свое расположение и частично смешиваются. У асцидий это приводит к тому, что образуются " хаотические" зародыши. У них имеются, как и в норме, мышечные, нервные, покровные и другие клетки. Однако клетки эти беспорядочно расположены и не образуют органов.

Т-локус - у мышей также известен целый ряд рецессивных мутаций сложного локуса Т 17-й хромосомы, затрагивающих раннее развитие. Локус Т представлен множеством (117) аллелей, обозначаемых знаком t с дополнительными индексами: t1, t2, t3 и т. д. Около 30% t-генов в гомозиготном состоянии вызывает гибель зародышей, часть аллелей являются полулетальными. Весь этот ряд рецессивных аллелей t распадается на восемь групп, которые могут быть комплементарны друг другу и в гетерозиготном состоянии не приводить к гибели зародыша.

Известны также и пять доминантных мутаций Т-локуса. Каждая из восьми групп обусловливает разного рода дефекты. Один из аллелей останавливает превращение морулы в бластоцисту, состоящую из трофобласта и эмбриобласта. Такие морулы гибнут. Другая мутация приводит к тому, что развившийся трофобласт не вступает в контакт со стенкой матки и зародыш тоже гибнет. Третьи мутантные зародыши не образуют внезародышевой эктодермы, у четвертых — гибнут клетки зародышевой эктодермы, у пятых — клетки зародышевой эктодермы не способны мигрировать в области первичной полоски и образовывать мезодерму, у шестых — уже образовавшиеся структуры нервной системы дегенерируют и т. д. Первичное нарушение, лежащее в основе всех этих эффектов, всего лишь одного локуса пока не выяснено. Однако очевидно, что локус Т играет первостепенную роль в морфогенезе эктодермы мышиного зародыша и организма в целом.

Гомеозисные гены — гены, определяющие процессы роста и дифференцировки в организме. Гомеозисные гены кодируют транскрипционные факторы, контролирующие программы формирования органов и тканей.

Мутации в гомеозисных генах могут вызвать превращение одной части тела в другую. Гомеозисными мутантами называются такие организмы, у которых на месте органа развивается орган другого типа. Например, у дрозофилы при мутации antennapedia формируется конечность на месте антенны.

Дизруптивные мутации - нарушение нормального развития, отсутствие или аномальное строение органа.

 

40) Нервная регуляция онтогенеза. Взаимодействие нервных центров с иннервируемыми органами. Механизмы и уровни гуморальной регуляции. Последствия нарушения нервной и гуморальной регуляции. Примеры.

Для каждого этапа онтогенеза характерно определенное соотношение активности желез внутренней секреции. В эмбриогенезе определяющую роль играют гормоны плаценты и эндокринные железы организма матери. Они контролируют закладку органов, их рост и развитие в течение того времени, пока формируются железы внутренней секреции плода. Первыми созревают клетки поджелудочной железы, продуцирующие инсулин, и кора надпочечников, которая производит кортикостероиды.

Гормоны этих желез эмбриона начинают регулировать углеводный и минеральный обмен веществ, а также закладки половых желез. В это время формируется тимус, начинается работа иммунной системы плода. Несколько позже начинает функционировать гипофиз и щитовидная железа. Гормон роста регулирует темпы роста всех органов, а гормоны щитовидной железы — энергетический обмен. Недостаток этих гормонов в эмбриогенезе приводит к тяжелым нарушениям физического и психического развития плода. Действие половых гормонов проявляется уже на 10-12 неделе развития эмбриона. В это время закладываются основные признаки, характерные для женского и мужского организмов.

Важно помнить следующее: гормон взаимодействует только с клетками, имеющими рецептор к нему. Таким образом, он может оказывать действие лишь на определенные органы. Кроме того, в разных клетках-мишенях гормоны воздействуют на различные группы генов, и поэтому они могут оказывать разнонаправленное воздействие. Так, сложные морфогенезы в онтогенезе амфибий, обеспечивающие превращение головастика в лягушку, происходят под действием гормонов щитовидной железы, главным образом, тироксина. Его влияние приводит к исчезновению хвоста и жаберных щелей, перестройке черепа, позвоночника и всего пищеварительного тракта, формированию конечностей, изменению строения кожи, в которой появляются многоклеточные слизистые железы. Другими словами, под действием гормона на данном этапе развития меняется вся организация особи.

Нервная регуляция начинается с закладки отделов ЦНС и продолжается в течение жизни особи.

Взаимодействие между центрами ЦНС и иннервируемыми органами устанавливается на ранних этапах эмбриогенеза, причем эти структуры взаимно стимулируют развитие друг на друга. Отходящие от центров ЦНС периферические нервы подрастают к зачаткам органов и стимулируют их развитие. Отсутствие периферических нервов или их повреждение (например лекарственными препаратами, токсинами токсоплазмы и др. ) вызывает нарушение формирования иннервируемых ими структур.

В постнатальном периоде сохраняется взаимосвязь между нервной системой и иннервируемыми органами. Родовые травмы головного мозга и периферических нервов приводят не только к параличам, но и к атрофии мышц и отставанию роста соответствующих конечностей или односторонней гипотрофии структур лица.

 

41) Межклеточные взаимодействия на разных этапах онтогенеза. Эмбриональная индукция и ее виды. Опыты Г. Шпемана в изучении явления эмбриональной индукции.

Эмбриональная индукция — взаимодействие между частями развивающегося организма у многоклеточных беспозвоночных и всех хордовых.

Важную роль в эмбриогенезе играют контактные и дистантные взаимодействия.

Контактные взаимодействия – контакт как минимум 2-х бластомеров, являются условием для нормального развития зародыша. Обуславливают дальнейшую судьбу бластомеров, определяя направление перемещения клеточных слоёв, миграцию, подавление деления и т. д. (Сосед определяет судьбу рядом лежащих бластомеров).

Дистантные взаимодействия: в процессах эмбриональной индукции. Взаимодействие частей зародыша, при котором 1 участок определяет судьбу другого, побуждая его к делению. Явление эмбриональной индукции – опыты Грегора Шпемана на амфибиях (1924 г. ).

Г. Шпеман и его сотрудница Х. Мангольд открыли у зародышей амфибий «организатор». Контрольный эксперимент был проведен Хильдой Мангольд в 1921 году. Она вырезала кусочек ткани из дорсальной губы бластопора гаструлы гребенчатого тритона со слабопигментированным зародышем, и пересадила ее в вентральную область другой гаструлы близкого вида, тритона обыкновенного, зародыш которого характеризуется обильной пигментацией. Эта естественная разница в пигментации позволила различить в химерном зародыше ткани донора и реципиента. Клетки дорсальной губы при нормальном развитии образуют хорду и мезодермальные сомиты (миотомы). После пересадки у гаструлы-реципиента из тканей трансплантата развивалась вторая хорда и миотомы. Над ними из эктодермы реципиента возникала новая дополнительная нервная трубка. В итоге это привело к образованию осевого комплекса органов второго головастика на том же зародыше.

 

(опыт из рабочей тетради №3)

!!! Межклеточные взаимодействия чрезвычайно важны в развитии и являются одним из механизмов, обеспечивающих интегрированность развития особи. Этот механизм действует на протяжении всего онтогенеза, но особую значимость имеет на ранних этапах эмбриогенеза, а именно, в период дробления.

Так, уже на 2-клеточной стадии зародыш представляет собой не совокупность отдельных клеток, а единый организм. Это может быть показано с привлечением результатов ряда экспериментов. Немецкий эмбриолог Вильгельм Ру разрушал одну из клеток зародыша лягушки на стадии 2 бластомеров раскаленной иглой. В ходе дальнейшего развития из оставшегося неповрежденными бластомера формировалась только половина зародыша - полунейрула с полным набором структур правой или левой стороны. Однако, как известно, на стадии дробления клетки большинства хордовых тотипотентны. И действительно, если повторить описанный эксперимент и сразу отделить убитый бла-стомер от неповрежденного, то из последнего сформируется абсолютно полноценный организм. Аномальное развитие зародыша в опыте В. Ру наблюдалось вследствие контакта бластомеров. Неповрежденный бла-стомер, благодаря наличию межклеточных влияний, «определял» себя только как часть целого организма и развивался в соответствии с полученной информацией. При отделении этого бластомера сигналов к нему от погибшей клетки не поступало, и он давал начало полноценной особи. Таким образом, уже начиная со стадии 2 бластомеров, каждый из них развивается как часть единого организма в соответствии с сигналами, полученными от своего окружения.

 

Со стадии гаструляции, если в эксперименте у зародыша амфибии взять дорзальную губу бластопора и пересадить её другому зародышу амфибии, но не на спинную, а на вентральную (брюшную) сторону, то развивается 2-я нервная трубка (на брюшной стороне). Вывод: Дорзальная губа бластопора гаструлы у амфибии в норме индуцирует закладку нервной трубки (в норме на спинной/дорзальной стороне).

 

Для осуществления эмбриональной индукции необходимо:

· наличие индуктора;

· наличие индуцируемой структуры, отвечающей на действие индуктора;

· наличие состояния компетентности (способности воспринимать этот стимул).

·

Виды эмбриональной индукции:

· первичная: обнаруживается первой, при закладке нервной трубки;

· вторичная: проявляется на более поздней стадии, чем гаструляция, при закладке всех структур зародыша.;

· последующая: при закладке глазного яблока, почек; каждая новая структура последовательно играет роль индуктора;

· взаимная: при закладке конечностей.

Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...