Определение скоростей и ускорений звеньев
Скорости и ускорения ведомых звеньев механизма могут быть определены методами планов, кинематических диаграмм и аналитическими. Во всех случаях в качестве исходных данных должны быть известны: схема механизма при определенном положении ведущего звена, его скорость и ускорение. Метод планов. Построение планов скоростей и ускорений проводится на основе последовательного составления векторных уравнений для всех групп, входящих в механизм, начиная с ведущего звена. Для определения полной картины скоростей любого звена, входящего в группу, достаточно знать линейные скорости двух точек этого звена или линейную скорость одной точки и угловую скорость звена. Так как скорости конечных элементов звеньев групп известны, то необходимо выбрать общую для двух звеньев точку и записать два уравнения для определения скорости этой точки. Для групп первого, второго и четвертого видов (рис. 2.3, а, б, г) это постоянная точка - центр средней вращательной пары группы, для других - мгновенная точка на одном звене, совпадающая в данный момент с центром конечной вращательной пары другого звена. При составлении векторных уравнений следует четко установить точки, скорости которых используются как скорости в переносном движении. Если звенья группы образуют поступательные кинематические, то необходимо использовать точки, принадлежащие направляющим звеньям. В качестве примера рассмотрим построение планов скоростей и ускорений группы второго класса второго вида.
а)
б) в)
Рис. 2.3. Кинематическое исследование группы второго класса второго вида
План скоростей. В этой группе (рис. 2.3, а) полагаем, что скорости примыкающих звеньев 1 и 4 заданы. Следовательно, скорость точки В2, принадлежащей звену 2, равна скорости точки В1, принадлежащей звену 1, т.е.
Рассмотрим движение звена 2 относительно звена 1. Эти звенья образуют вращательную пару, поэтому на основании теоремы о сложении скоростей в сложном движении скорость точки С на звене 2 складывается из скорости
где Теперь определим скорость точки С, отнеся ее к 3 звену. Звено 3 образует со звеном 4 поступательную пару, поэтому скорость точки С3 можно представить как сумму двух скоростей: скорости
Точку С4 расположим на плоскости, жестко связанной со звеном 4. Зная закон движения этого звена, можно найти мгновенный цент? вращения (МЦВ) и при известном расстоянии его от точки С4 и угловой скорости w4 определить величину и направление скорости этой точки. Систему уравнений (2.6) и (2.7) решим графически в выбранном масштабе
Далее из полюса pv плана скоростей параллельно вектору Vc = (pvc) Из плана скоростей получим также величины и направления векторов относительных скоростей: вращательной VCB - отрезок bc и поступательной
а направление ее определяется мысленным переносом вектора относительной скорости VСВ - отрезка bc плана скоростей в точку С на плане положения группы. Пользуясь планом скоростей, можно найти скорость любой точки на звене. Скорость точки S на втором звене определяется из условия представления сложного движения звена 2 как поступательного со скоростью VB и вращательного вокруг точки В, а также как поступательного со скоростью Vc и вращательного вокруг точки С:
Решая эту систему графически, определяют точку S - конец вектора VS. Из построения следует, что треугольник csb на плане скоростей подобен треугольнику CSB на плане положений группы и повернут относительно него на 90°. Правильность построения определяется одинаковым порядком букв при обходе контура звена и контура относительных скоростей на плане скоростей в одном и том же направлении. План ускорений. Исходными данными для построения плана ускорений являются план положения группы, план скоростей (рис. 2.3, а, б) и ускорения звеньев, примыкающих к данной группе. При построении плана ускорений полностью применимы рассуждения, использованные при решении задачи об отыскании скоростей звеньев. Ускорение точки В2 известно, т.к. она совпадает с точкой В1, т.е. Для нахождения ускорения любой точки звеньев 2 и 3 дополнительно надо знать ускорение хотя бы одной точки на каждом из этих звеньев. В качестве такой точки следует использовать центр шарнира С, являющийся общей точкой для звеньев 2 и 3. Рассматривая вращательное движение звена 2 вокруг точки В и поступательное - звена 3 относительно звена 4, записываем следующие векторные уравнения:
Систему уравнений (2.10) решим графически. На чертеже (рис. 2.3, в) обозначим полюс плана ускорений ра и выберем масштаб построения плана ускорений
Из точки b плана ускорений проводим линию действия ускорения Из точки n перпендикулярно к отрезку bn проводим линию действия тангенциального ускорения Ускорение Кориолиса (поворотное ускорение):
откладываем на плане ускорения в виде отрезка вращения среды поворота - звена 4. Из точки К проводим линию действия ускорения Из плана ускорения получим также величины и направления векторов относительных ускорений e Направление e2 устанавливается путем мысленного переноса вектора nc в точку С и определения направления вращения звена 2 вокруг точки В под влиянием этого вектора. Пользуясь планом ускорений, можно найти ускорение любой точки на звене 2 и 3. Например, требуется определить ускорение точки S на звене 2. На основании известного положения о подобии фигур звена и плана относительных ускорений строим на отрезке bc плана ускорений треугольник csb, подобный треугольнику CSB на звене 2, соблюдая при этом одинаковую последовательность расположения букв при обходе контуров этих треугольников в одном направлении. Соединяя полученную в результате построения точку S с полюсом ра, получаем отрезок pas, определяющий в масштабе ускорение точки S:as = (pas)
Аналитический метод. Этот метод позволяет определять скорости и ускорения с более высокой точностью. Обычно применяют метод последовательного дифференцирования функции перемещения точки, скорость и ускорение которой необходимо определить. Функцию перемещения S=S(t) или S=S(j) можно получить из геометрических соображений, как, например, это сделано для кривошипно-ползунного механизма - формула (2.5), а ее скорость и ускорение - путем дифференцирования уравнений (2.3). Дифференцируя уравнения (2.3) по обобщенной координате j1 (углу поворота ведущего звена), получают не истинную угловую скорость, а безразмерную величину
т.е. угловая скорость i-го звена wi равна произведению угловой скорости ведущего звена wi на аналог скорости. Продифференцировав уравнения (2.3) и подставив значение аналога скорости, получаем уравнения для определения угловой скорости, получаем уравнения для определения угловой скорости шатуна w2 (рис. 2.2) и относительной скорости звена 3 - u30=uс:
Определим значение w2 из второго уравнения (2.17): и подставим его в первое уравнение, с учетом формулы (2.4), получим значение uс:
При вторичном дифференцировании уравнений (2.3) с использованием понятия аналога углового ускорения, представляющего вторую производную по углу поворота ведущего звена
из уравнения (2.19) получим значение:
Получив значения угловых скоростей и ускорений, можно определить скорость и ускорение любой точки звеньев механизма. В тех случаях, когда l £ 1/3, пользуются приближенными формулами при определении перемещения, скорости и ускорения ползуна. При этом перемещение ползуна Sc измеряем от мертвого положения Со (рис. 2.2): Sc = l1 + l2 - Xc, или с учетом (2.5) получим:
Раскладывая в ряд радикал, входящий в формулу (2.20) по биному Ньютона и ограничиваясь его первыми двумя членами, получим:
После дифференцирования скорость uс и ускорение ас определяют по формулам: uс @ w1l1 (sinj1 + l/2 sin 2j1) (2.22) aс @ w12l1 (cosj1 + lcos 2j1) (2.23)
Воспользуйтесь поиском по сайту: ![]() ©2015 - 2025 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...
|