Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

Представления групп симметрии и их роль в квантовой теории




Несмотря на то, что симметрия уравнения, как отмечалось выше, не всегда присуща решениям этого уравнения, она тем не менее существенно влияет на характер решений. Чтобы понять, в чем заключается это влияние, поясним сначала понятия приводимых и неприводимых представлений групп симметрии.

Рассмотрим преобразование декартовых координат x,y,z и их произведений x 2, y 2, z 2, yz, xz, xy под действием операций группы O(см. выше).

Нетрудно заметить, что преобразуются под действием операций группы O сами через себя 3. Вторая совокупность также обладает этим свойством, но в отличие от первой из исходных x 2, y 2, z 2, yz, xz, xy можно составить новые линейные комбинации, которые разбиваются на подсовокупности, преобразующиеся независимо друг от друга. Говорят, что совокупность первого типа образует базис неприводимого представленияГ 4 группы O, а совокупность второго типа - базис приводимого представления Г, которое, однако, раскладывается на сумму неприводимых:

o=x 2+y 2+z 2Г 1,

{ 1= 2z 2-x 2-y 2; 2= (x 2-y 2)} Г 3,

{ 1= yz; 2= xz; 3 = xy;} Г 5,

т. е. Г=Г 1+Г 3+Г 5,

(6) (1) (2) (3),

где внизу, в скобках, написаны размерности представлений (т.е. числа базисных функций).

Если обозначить базисные функции представления Г через Г (где индекс  нумерует базисные функции), то результат действия операции G группы на базисную функцию можно записать в виде:

где f - размерность представления Г. Представления группы фактически образуют матрицы D(Г)(g), ибо, как можно легко показать, они имеют тот же закон умножения, что и элементы группы g, которые они представляют. Каждой группе принадлежит бесконечно много представлений, однако число неприводимых представлений всегда равно числу классов. Например, группа O включает 5 классов: E, 6C 42, 6C 2, 8C 3 и, следовательно, имеет 5 неприводимых представлений, которые обозначают Г 1, Г 2, Г 3, Г 4, Г 5.

Неприводимые представления групп симметрии играют важнейшую роль в квантовой физике. Решение уравнения Шредингера для стационарного случая

(2)

H =E 

(где H- оператор Гамильтона,  - волновая функция системы, E- значение полной энергии) при определенных граничных условиях приводит к набору разрешенных значений энергии (энергетическому спектру) и волновых функций.

В случае существования нескольких линейно независимых волновых функций для одного и того же энергетического уровня говорят о вырождении этого уровня, а число независимых волновых функций (состояний), принадлежащих этому уровню, называют кратностью вырождения. Если уравнение (2) инвариантно относительно преобразований некоторой группы симметрии G H, то волновые функции, являющиеся решениями этого уравнения и принадлежащие одному энергетическому уровню, будут обязательно составлять базис неприводимого представления группы G H. Это утверждение составляет содержание теоремы Вигнера, имеющей, правда, оговорку о случайных вырождениях, на которой мы останавливаться не будем.

Отсюда следует, что энергетические уровни квантовой системы можно классифицировать по неприводимым представлениям группы симметрии. Иными словами, симметрия вызывает объединение квантовых состояний в группы (мультиплеты), относящиеся к энергетическим уровням, каждый из которых характеризуется неприводимым представлением группы симметрии.

Использование представлений групп симметрии позволяет очень просто устанавливать так называемые правила отбора для квантовых переходов между энергетическими уровнями под действием разного рода нестационарных возмущений (напр., под действием света), что очень важно для оптической спектроскопии. Кроме того, применение представлений групп симметрии существенно облегчает рассмотрение влияний стационарных внешних воздействий (электрических, магнитных полей, механических напряжений и т.д.), к примеру, на оптические спектры квантовых систем. Дело в том, что "включение" внешнего воздействия изменяет симметрию задачи (обычно симметрия понижается от группы G H до одной из ее подгрупп G'). Между тем, представление Г, неприводимое в группе GH, может стать приводимым в подгруппе G':

(3)

Г=∑j cjГj,

что означает расщепление энергетического уровня типа Г на ряд подуровней, характеризуемых неприводимыми представлениями Г j группы G'. Это влечет за собой расщепление соответствующих линий, полос в оптическом спектре (так называемые эффекты Штарка, Зеемана, пьезоспектроскопические явления и т.д.). Проводя разложение (3), мы сразу узнаем, на сколько подуровней и какого типа расщепится данный уровень. Соответствующие разложения легко проводятся с использованием таблиц характеров неприводимых представлений групп симметрии (см. [7-9]).

3. Негеометрические виды симметрии

Физические законы могут обладать свойствами симметрии иного рода, нежели рассмотренные выше. Например, в квантовой теории важную роль играет так называемая перестановочная симметрия, т.е. инвариантность уравнения Шредингера относительно перестановок одинаковых частиц 4. Важнейшим следствием перестановочной симметрии является существование двух классов частиц: бозонов и фермионов, существенно различающихся по своим свойствам. К первым относятся частицы с целым спином (в единицах h=h/(2), где h- постоянная Планка), а ко вторым - с полуцелым.

Волновые функции двух состояний системы частиц, различающихся перестановкой P одинаковых частиц, физически эквивалентны, т.е. функции  и P  могут отличаться только несущественным фазовым множителем:

(4)

P=exp(i) .

Отсюда, с одной стороны, P2=exp(2i), а с другой - P2=1, т.е. exp(2i)=1. Тогда exp(i)=1, и (4) запишется:

P = .

Следовательно, волновая функция системы одинаковых частиц должна быть симметричной P =+  (бозоны) или антисимметричной P=- (фермионы).

Выдающийся швейцарский физик-теоретик Вольфганг Паули (1900-1958) установил связь перестановочной симметрии со спином частиц: частицы с целым спином - бозоны, а с полуцелым - фермионы. Он же показал, что фермионы должны подчиняться принципу запрета (широко известному сейчас как принцип Паули): два фермиона не могут находиться в одном и том же состоянии. Очевидно, что перестановка фермионов в одном и том же состоянии не меняла бы волновую функцию P=, но, с другой стороны, ввиду антисимметричности волновой функции системы фермионов P=-. Следовательно, =-=0, т.е. такие состояния не могут существовать.

Принцип Паули, как известно, служит ключом к объяснению периодического закона Д.И. Менделеева. Если бы не выполнялся принцип Паули, то все электроны любого атома перешли бы в наинизшее по энергии 1s-состояние, что привело бы к потере того разнообразия химических свойств атомов, которое наблюдается в природе. Это как нельзя лучше иллюстрирует важное значение перестановочной симметрии.

К не менее значимому виду симметрии можно отнести калибровочную симметрию уравнений электродинамики и релятивистской квантовой механики (уравнений Дирака). Суть ее заключается в следующем: если умножение волновой функции на постоянный фазовый множитель exp(i) не меняет уравнение Дирака, то умножение ее на переменный фазовый множитель exp(i(x,y,z,t)) (так называемое локальное калибровочное преобразование) приводит к его изменению. В уравнении появляются дополнительные слагаемые, происходящие от дифференцирования (x,y,z,t) по координатам и времени. Если, однако, постулировать принцип локальной калибровочной инвариантности, то можно скомпенсировать дополнительные слагаемые, вводя взаимодействие с некоторым векторным полем. Последнее по своим свойствам оказывается тождественным электромагнитному полю, которое подчиняется уравнениям Дж. Максвелла. Получается, что уравнения Максвелла можно вывести из принципа локальной калибровочной симметрии! Поэтому электромагнитное поле можно назвать калибровочным полем для электронов. Кванты этого поля (фотоны) являются переносчиками электромагнитного взаимодействия между электронами. Они, как известно, имеют спин, равный 1 (в единицах h) и массу покоя, равную 0. Эти два свойства присущи любым калибровочным полям (см. ниже).

Китайский физик Ч.Янг и американец Р. Миллс попытались распространить принцип локальной калибровочной инвариантности на сильные взаимодействия. Для сильных взаимодействий адронов5 еще в 30-х гг. была установлена глобальная изотопическая инвариантность, основанием для которой послужила возможность объединить часть адронов в семейства "похожих" частиц. Частицы каждого семейства имеют одинаковые внутренние характеристики: спин, четность, барионный заряд, странность, очарование, красоту (исключая электрический заряд) и примерно одинаковые массы. Такие семейства адронов называют изомультиплеты. Наиболее известные из них - изодублет барионов: протон-нейтрон n,p и изотриплет мезонов: +,o,-.

Если вспомнить о релятивистской связи между энергией и массой E=mc2, то частицы одинаковой массы, сходные по своим свойствам с точки зрения сильных взаимодействий, можно рассматривать как одну частицу, находящуюся в разных квантовых состояниях (но с одной и той же энергией). Следовательно, по теореме Вигнера, эти частицы можно отнести к определенному неприводимому представлению группы симметрии сильных взаимодействий. Проблема состоит в том, чтобы правильно определить эту группу симметрии.

Подобно тому, как для атома из двух базисных состояний спина s=1/2 с проекцией спина на выделенное направление ms=1/2, можно путем векторного сложения спинов построить спиновые мультиплеты с квантовым числом полного спина S=0,1/2,1,3/2,2...(соответственно с мультиплетностью 2S+1=1,2,3,4,5...), возможные изомультиплеты нестранных адронов могут быть найдены из двух базисных состояний u и d с проекциями изоспина mT=1/2 соответственно. Эти изомультиплеты характеризуются квантовым числом полного изоспина T и его (2T+1)-й проекциями mT= =T,-T+1,-T+2...+T. С математической точки зрения, состояния ms=1/2, как и состояния (u, d), образуют базис так называемого фундаментального представления d(1/2) группы SU(2)6, и последовательное перемножение d(1/2) x d(1/2) x...x d(1/2) с последующим разложением на неприводимые представления D(s) (или T) дает значения (или) в мультиплетах.

Если в случае одной волновой функции  глобальное калибровочное преобразование заключается в простом умножении на экспоненциальный множитель '=exp(i), то для двух состояний глобальное калибровочное преобразование имеет вид:

(5)

где матрица коэффициентов aik обладает специальными свойствами7. Набор этих матриц совпадает с известными из теории спиноров матрицами D(1/2)(), описывающими преобразования спиновых функций (-1/2,+1/2) при вращении системы координат, задаваемом углами Эйлера . Поэтому глобальное калибровочное преобразование (5) можно интерпретировать как вращение в некотором внутреннем изоспиновом пространстве.

Однако попытка Ч. Янга и Р.Миллса рассматривать адроны как состоящие из двух фундаментальных частиц u и d не удалась. Двух базисных состояний для построения всех наблюдаемых адронов оказалось недостаточно. Поэтому американские физики М.Гелл-Ман и У.Нейман обратились к группе SU(3) унитарных преобразований трех фундаментальных состояний u,d,s. Эти состояния и сопряженные им u, s, d М.Гелл-Ман и Дж.Цвейг интерпретировали как действительно элементарные частицы-кварки и антикварки соответственно. Если приписать кваркам дробные электрические заряды (+2/3,-1/3,-1/3 для u,d,s соответственно, и противоположные по знакам для антикварков u, s, d), а также определенные значения спина, странности, барионного заряда, изоспина и его проекции, то из них можно построить большинство из известных адронов.

Группа SU(3) кроме трехмерных неприводимых фундаментальных представлений имеет ряд неприводимых представлений с размерностями 1,6,8,10... Это вполне согласуется с существованием синглетов, октетов и декуплетов частиц-адронов с близкими массами и одинаковыми спинами (в пределах каждого мультиплета) 8. Некоторый разброс значений масс в мультиплетах, как выяснилось позднее, связан с тем, что симметрия SU(3) f 9 на самом деле является приближенной.

В плане классификации адронов успех гипотезы SU(3) f и кварков был несомненным. Особенно большое впечатление произвело теоретическое предсказание М.Гелл-Маном бариона -, который заполнил пустое место в одном из декуплетов. Гелл-Ман предсказал также примерную массу этой частицы - 1675 МэВ (в энергетических единицах) и странность S= -2. Спустя полтора года эта частица действительно была обнаружена экспериментально с массой 1672 МэВ и странностью S= -2. С этого момента классификация адронов на основе приближенной унитарной симметрии SU(3) f стала общепризнанной, а М.Гелл-Ман в 1969 г. был удостоен Нобелевской премии по физике.

Однако наряду с успехами унитарной классификации адронов возник ряд новых проблем, например, существование некоторых барионов ++=(u,u,u); -=(d,d,d); -=(s,s,s), кварковый состав которых (в частности, барионов, про-тиворечил принципу Паули, согласно которому в одном и том же состоянии могут находиться не более двух фермионов с противоположными спинами (см. выше). Другая трудность связана с неудачами попыток обнаружения свободных кварков.

Для преодоления первой трудности пришлось ввести еще одну квантовую характеристику кварков, которая может принимать три значения. Эта величина получила название цветовой заряд (или просто цвет), а три ее значения условно назвали красным, желтым и синим оттенками. Цвет как фундаментальная характеристика кварков был введен российскими учеными Н.Боголюбовым, Б.Струминским и А.Тавхелидзе, а также, независимо от них, - Й.Намбу (США) в 1965 г. Три кварка, входящие в приведенные выше частицы ++; -; -, имеют разный цветовой заряд, т.е. находятся в разных состояниях, и потому не нарушается принцип Паули. Комбинация (q r,q y,q b) составляет "бесцветный" синглет. Антикварки имеют антикрасный, антижелтый или антисиний цвета. Барионы состоят из трех кварков разного цвета. Мезоны, состоящие из кварка и одноименного антикварка, также "бесцветны", как и барионы.

Введение цвета привело к открытию еще одного вида симметрии для сильного взаимодействия описываемой вновь группой SU(3) С. Однако в этом случае роль трех фундаментальных состояний играют три цвета, что и отражено индексом (от "color" - цвет). В отличие от SU(3) f симметрия SU(3) c является точной. Последняя включает глобальные калибровочные (унитарные) преобразования цветовых состояний при фиксированных ароматах кварков. Придание статуса локальных этим пробразованиям приводит к калибровочным полям, описывающим сильные взаимодействия между кварками. Эти поля получили название глюонных (от "glue" - клей).

Итак, подобно тому, как электрические заряды являются источниками электромагнитного поля, цветовые заряды порождают глюонное поле. Если переносчиками первого являются фотоны, то второго - глюоны. И те и другие электрически нейтральны и безмассовы, но глюоны обладают цветовым зарядом. Из свойств группы симметрии SU(3) c вытекает существование восьми типов глюонов. Наличие цветовых зарядов у них придает сильным взаимодействиям совершенно необычные свойства, проявляющиеся, в частности, в том, что сила взаимодействия между кварками убывает при уменьшении и растет при увеличении расстояния между ними 10. Это, по-видимому, является причиной "пленения" кварков внутри адронов, что и объясняет неудачи попыток обнаружения свободных кварков.

Теория сильных взаимодействий, опирающаяся на представление о цветовых зарядах, получила название квантовой хромодинамики. Эта теория практически завершена для малых расстояний между кварками, но для больших расстояний еще имеются трудности.

Тем не менее применение принципов глобальной и локальной унитарной симметрии способствовало существенному продвижению в области классификации адронов и описания сильных взаимодействий. Вместе с тем имеется еще ряд проблем на этом пути. Так, для классификации и описания взаимодействий наиболее тяжелых и короткоживущих адронов (так называемых резонансов) потребовалось ввести еще три кварка, получивших названия c,b,t. Вместе с лептонами кварки образуют три поколения элементарных частиц:

1 2 3  
u c t

u, d, c, s, t, b- кварки,

-нейтрино

e-электрон

-мезоны

d s b
e  
e

(аналогично следует разбить и античастицы). Имеется теоретическое обоснование того, что число поколений должно исчерпываться тремя. Эти повторения поколений представляют собой главную загадку физики элементарных частиц. Возможно, они вновь указывают на составной характер этих частиц и на новую, более глубокую симметрию.

Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...