Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

Электрон-транспортная цепь хлоропластом.




Две фотосистемы связаны между собой посредством цепи электронных переносчиков (рис. 4). ФС2 является источником электронов для ФС1. Инициируемое светом разделение зарядов в фотореакционных центрах P700и P680 обеспечивает перенос электрона от воды, разлагаемой в ФС2, к конечному акцептору электрона – молекуле НАДФ+. Цепь электронного транспорта (ЦЭТ), соединяющая две фотосистемы, в качестве переносчиков электрона включает в себя молекулы пластохинона, отдельный электронтранспортный белковый комплекс (так называемый b/f-комплекс) и водорастворимый белок пластоцианин (Pc). Схема, иллюстрирующая взаимное расположение электронтранспортных комплексов в тилакоидной мембране и путь переноса электрона от воды к НАДФ+,

Фотохимические процессы в реакционных центрах ФС1 и ФСII приводят к быстрому первичному запасанию энергии квантов света в форме лабильных соединений с высоким энергетическим потенциалом. Дальнейшие реакции фотосинтеза направлены на преобразование энергии света в более стабильную форму: сначала в форму восстановленного НАДФН и АТФ, а затем, при использовании этих продуктов в реакциях углеродных циклов, — в форму углеводов и других стабильных органических соединений. Образование восстановленного НАДФН и АТФ в хлоропластах связано с работой электрон-транспортной цепи (ЭТЦ) фотосинтеза. Электрон-транспортная цепь — это цепь редокс-агентов, определенным образом расположенных в мембране хлоропластов, осуществляющих фотоиндуцируемый транспорт электронов от воды к НАДФ. вижущей силой транспорта электронов по ЭТЦ фотосинтеза являются окислительно-восстановительные реакции в реакционных центрах (РЦ) двух фотосистем (ФС).

ЭТЦ хлоропластов включает ряд переносчиков, общих для всех типов редокс-цепей живых организмов. К ним относятся цитохромы, железосерные белки, хиноны, флавиновые ферменты и пиридиннуклеотиды. Вместе с тем в ЭТЦ хлоропластов входят специфические переносчики электронов, такие как циклические тетрапирролы (хлорофиллы реакционных центров, феофитин), марганецсодержащий кластер, осуществляющий окисление воды, некоторые аминокислотные остатки белков (тирозин в ФСП) и медьсодержащий белок пластоцианин.

Экология фотосинтеза

Фотосинтетическая деятельность растений зависит от многих внешних факторов, и главные из них — условия освещения (интенсивность, спектральный состав света), доступность и концентрация углекислого газа, температура среды, водоснабжение и минеральное питание. Факторы внешней среды (экзогенные, экологические, факторы), воздействуя на отдельные реакции фотосинтеза, вызывают изменение активности фотосинтетического аппарата в целом, что в конечном итоге определяет общую продуктивность растений. В природе факторы действуют на растение одновременно, и его продуктивность является, таким образом, интегральной функцией совокупности экологических факторов.

Интенсивность света влияет на характер фотохимических и метаболических процессов в хлоропластах. При низких интенсивностях света в первую очередь активируется нециклический поток электронов. Увеличение интенсивности света стимулирует циклический поток электронов и повышает долю циклического транспорта электронов в общем потоке электронов по ЭТЦ хлоропластов. В условиях избыточной освещенности циклический транспорт электронов может играть защитную роль в хлоропластах, а также служить источником энергии для дополнительного синтеза АТФ и тем самым способствовать активации процессов ассимиляции углерода. С интенсивностью света связано образование различных продуктов фотосинтеза. Так, при слабой освещенности образуются главным образом аминокислоты, тогда как синтез углеводов в хлоропластах требует высокой интенсивности света.

Спектральный состав света определяет общую интенсивность фотосинтеза, активность его отдельных реакций и набор синтезируемых продуктов. Кривая зависимости интенсивности фотосинтеза от качества света при выровненном количестве квантов (спектр действия фотосинтеза) демонстрирует два отчетливых максимума — в синей и красной области спектра, совпадающих со спектрами поглощения фотосинтетических пигментов.

Содержание СО2 в окружающей среде является одним из важнейших факторов, определяющих скорость фотосинтеза. Как видно из рис. 3.48, зависимость интенсивности фотосинтеза от концентрации СО2 имеет логарифмический характер, т. е. увеличение концентрации СО2 приводит к быстрому увеличению интенсивности фотосинтеза. При концентрации СО2 0,06 — 0,15 % у большинства растений достигается насыщение фотосинтеза. Увеличение интенсивности фотосинтеза при повышении концентрации СО2 обусловлено реализацией в этих условиях потенциальной карбоксилазной активности Рубиско и созданием в хлоропластах большого пула акцептора СО2 — рибулозобисфосфата.

Для большинства С3-растений умеренной климатической зоны оптимальная для фотосинтеза температура находится в интервале 20 — 25 "С. У растений с С4-путем фотосинтеза и САМ-фотосинтезом температурный оптимум приходится на 30 — 35 °С. При дальнейшем повышении температуры фиксация СО2 уменьшается вследствие снижения тургора в листьях и закрывания устьиц. В растениях наибольшую термозависимость проявляют реакции углеродных циклов. Весьма чувствительны к температуре также транспорт электронов и синтез АТФ. Первичные реакции фотосинтеза, связанные с поглощением света, миграцией энергии возбуждения в реакционные центры и разделением зарядов в реакционных центрах, от температуры практически не зависят.

Значение водного режима для фотосинтеза определяется в первую очередь действием воды на состояние устьиц листа: до тех пор, пока устьица остаются оптимально открытыми/ интенсивность фотосинтеза не изменяется под влиянием колебаний водного баланса. Частичное или полное закрывание устьиц, вызванное дефицитом воды в растении, приводит к нарушению газообмена и снижению поступления углекислого газа к карбоксилирующим системам листа. Вместе с тем, при водном дефиците снижается активность ферментов ВПФ цикла (цикла Кальвина), обеспечивающих регенерацию рибулозобисфосфата, и в значительной степени ингибируется фотофосфорилирование. В результате в условиях водного дефицита наблюдается ингибирование фотосинтетической активности растений. При длительном дефиците воды возможно снижение общей фотосинтетической продуктивности растений, в том числе и за счет уменьшения величины листьев, а сильное обезвоживание может в итоге вызвать нарушение структуры хлоропластов и полную потерю их фотосинтетической активности.

 

Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...